IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61340-w.html
   My bibliography  Save this article

Static and transient vacuolation in protein-based coacervates induced by charged amino acids

Author

Listed:
  • Zhenhua Li

    (University of Chinese Academy of Sciences)

  • Qing Liu

    (University of Chinese Academy of Sciences)

  • Han Ding

    (University of Chinese Academy of Sciences)

  • Zhuojun Meng

    (University of Chinese Academy of Sciences)

  • Qi-Hong Zhao

    (Shanghai Jiao Tong University)

  • Nan-Nan Deng

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University Sichuan Research Institute)

  • Lifei Zheng

    (University of Chinese Academy of Sciences)

Abstract

Vacuolation is a common phenomenon observed in many subcellular membrane-less organelles, such as paraspeckles, granules and nucleoli. Previous work suggests that such dynamic sub-structuration can be a result of charge disproportion at super-stoichiometric ratios of the assembling component. In this work, we demonstrate that other than remodeling the large coacervate-constituting components, the introduction of small charged motifs, amino acids, can also lead to the formation of static vacuoles in the coacervate droplets. Furthermore, we find that transient vacuolation can be induced when the charged amino acid (L-aspartic acid) is in situ produced in the coacervate droplets. The transient vacuoles can be tuned in lifetimes and initiated repeatedly, which highly resembles the ubiquitous dissipative assemblies in living systems that require a continuous supply of energy or matter. Therefore, our work may suggest an avenue to understand the sub-structuration within subcellular membrane-less organelles.

Suggested Citation

  • Zhenhua Li & Qing Liu & Han Ding & Zhuojun Meng & Qi-Hong Zhao & Nan-Nan Deng & Lifei Zheng, 2025. "Static and transient vacuolation in protein-based coacervates induced by charged amino acids," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61340-w
    DOI: 10.1038/s41467-025-61340-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61340-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61340-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nadia A. Erkamp & Tomas Sneideris & Hannes Ausserwöger & Daoyuan Qian & Seema Qamar & Jonathon Nixon-Abell & Peter George-Hyslop & Jeremy D. Schmit & David A. Weitz & Tuomas P. J. Knowles, 2023. "Spatially non-uniform condensates emerge from dynamically arrested phase separation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Chao Ma & Jing Sun & Bo Li & Yang Feng & Yao Sun & Li Xiang & Baiheng Wu & Lingling Xiao & Baimei Liu & Vladislav S. Petrovskii & Liu & Jinrui Zhang & Zili Wang & Hongyan Li & Lei Zhang & Jingjing Li , 2021. "Ultra-strong bio-glue from genetically engineered polypeptides," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Carsten Donau & Fabian Späth & Marilyne Sosson & Brigitte A. K. Kriebisch & Fabian Schnitter & Marta Tena-Solsona & Hyun-Seo Kang & Elia Salibi & Michael Sattler & Hannes Mutschler & Job Boekhoven, 2020. "Active coacervate droplets as a model for membraneless organelles and protocells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Alexander M. Bergmann & Jonathan Bauermann & Giacomo Bartolucci & Carsten Donau & Michele Stasi & Anna-Lena Holtmannspötter & Frank Jülicher & Christoph A. Weber & Job Boekhoven, 2023. "Liquid spherical shells are a non-equilibrium steady state of active droplets," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Yudan Yin & Lin Niu & Xiaocui Zhu & Meiping Zhao & Zexin Zhang & Stephen Mann & Dehai Liang, 2016. "Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    6. Jiahua Wang & Manzar Abbas & Junyou Wang & Evan Spruijt, 2023. "Selective amide bond formation in redox-active coacervate protocells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Taranpreet Kaur & Muralikrishna Raju & Ibraheem Alshareedah & Richoo B. Davis & Davit A. Potoyan & Priya R. Banerjee, 2021. "Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Judit Sastre & Advait Thatte & Alexander M. Bergmann & Michele Stasi & Marta Tena-Solsona & Christoph A. Weber & Job Boekhoven, 2025. "Size control and oscillations of active droplets in synthetic cells," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Ravi Chawla & Jenna K. A. Tom & Tumara Boyd & Nicholas H. Tu & Tanxi Bai & Danielle A. Grotjahn & Donghyun Park & Ashok A. Deniz & Lisa R. Racki, 2024. "Reentrant DNA shells tune polyphosphate condensate size," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Tomoya Maruyama & Jing Gong & Masahiro Takinoue, 2024. "Temporally controlled multistep division of DNA droplets for dynamic artificial cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Alexander M. Bergmann & Jonathan Bauermann & Giacomo Bartolucci & Carsten Donau & Michele Stasi & Anna-Lena Holtmannspötter & Frank Jülicher & Christoph A. Weber & Job Boekhoven, 2023. "Liquid spherical shells are a non-equilibrium steady state of active droplets," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Mark D. Driver & Patrick R. Onck, 2025. "Selective phase separation of transcription factors is driven by orthogonal molecular grammar," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    6. Haonan He & Xianchi Zhou & Yuxian Lai & Rouye Wang & Hongye Hao & Xintian Shen & Peng Zhang & Jian Ji, 2025. "Chain entanglement enhanced strong and tough wool keratin/albumin fibers for bioabsorbable and immunocompatible surgical sutures," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    7. Jun Zhang & Wenxiang Wang & Yan Zhang & Qiang Wei & Fei Han & Shengyi Dong & Dongqing Liu & Shiguo Zhang, 2022. "Small-molecule ionic liquid-based adhesive with strong room-temperature adhesion promoted by electrostatic interaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Chongrui Zhang & Xufei Liu & Jiang Gong & Qiang Zhao, 2023. "Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Andrew Z. Lin & Kiersten M. Ruff & Furqan Dar & Ameya Jalihal & Matthew R. King & Jared M. Lalmansingh & Ammon E. Posey & Nadia A. Erkamp & Ian Seim & Amy S. Gladfelter & Rohit V. Pappu, 2023. "Dynamical control enables the formation of demixed biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Avigail Baruch Leshem & Sian Sloan-Dennison & Tlalit Massarano & Shavit Ben-David & Duncan Graham & Karen Faulds & Hugo E. Gottlieb & Jordan H. Chill & Ayala Lampel, 2023. "Biomolecular condensates formed by designer minimalistic peptides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Jing Sun & Haonan He & Kelu Zhao & Wenhao Cheng & Yuanxin Li & Peng Zhang & Sikang Wan & Yawei Liu & Mengyao Wang & Ming Li & Zheng Wei & Bo Li & Yi Zhang & Cong Li & Yao Sun & Jianlei Shen & Jingjing, 2023. "Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Mina Farag & Wade M. Borcherds & Anne Bremer & Tanja Mittag & Rohit V. Pappu, 2023. "Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Shoupeng Cao & Peng Zhou & Guizhi Shen & Tsvetomir Ivanov & Xuehai Yan & Katharina Landfester & Lucas Caire da Silva, 2025. "Binary peptide coacervates as an active model for biomolecular condensates," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    15. Laicheng Zhou & Longchen Zhu & Cong Wang & Tengyan Xu & Jing Wang & Bin Zhang & Xin Zhang & Huaimin Wang, 2025. "Multiphasic condensates formed with mono-component of tetrapeptides via phase separation," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    16. Aniruddha Chattaraj & Eugene I. Shakhnovich, 2024. "Multi-condensate state as a functional strategy to optimize the cell signaling output," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Xiaoming Xie & Yulian Jiang & Xiaoman Yao & Jiaqi Zhang & Zilin Zhang & Taoping Huang & Runhan Li & Yifa Chen & Shun-Li Li & Ya-Qian Lan, 2024. "A solvent-free processed low-temperature tolerant adhesive," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Antara Reja & Sangam Jha & Ashley Sreejan & Sumit Pal & Subhajit Bal & Chetan Gadgil & Dibyendu Das, 2024. "Feedback driven autonomous cycles of assembly and disassembly from minimal building blocks," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Nadia A. Erkamp & Tomas Sneideris & Hannes Ausserwöger & Daoyuan Qian & Seema Qamar & Jonathon Nixon-Abell & Peter George-Hyslop & Jeremy D. Schmit & David A. Weitz & Tuomas P. J. Knowles, 2023. "Spatially non-uniform condensates emerge from dynamically arrested phase separation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Tony Z. Jia & Yutetsu Kuruma, 2019. "Recent Advances in Origins of Life Research by Biophysicists in Japan," Challenges, MDPI, vol. 10(1), pages 1-21, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61340-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.