IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42344-w.html
   My bibliography  Save this article

Liquid spherical shells are a non-equilibrium steady state of active droplets

Author

Listed:
  • Alexander M. Bergmann

    (Technical University of Munich)

  • Jonathan Bauermann

    (Max Planck Institute for the Physics of Complex Systems
    Center for Systems Biology Dresden)

  • Giacomo Bartolucci

    (Max Planck Institute for the Physics of Complex Systems
    Center for Systems Biology Dresden)

  • Carsten Donau

    (Technical University of Munich)

  • Michele Stasi

    (Technical University of Munich)

  • Anna-Lena Holtmannspötter

    (Technical University of Munich)

  • Frank Jülicher

    (Max Planck Institute for the Physics of Complex Systems
    Center for Systems Biology Dresden
    Technical University of Dresden)

  • Christoph A. Weber

    (University of Augsburg)

  • Job Boekhoven

    (Technical University of Munich)

Abstract

Liquid-liquid phase separation yields spherical droplets that eventually coarsen to one large, stable droplet governed by the principle of minimal free energy. In chemically fueled phase separation, the formation of phase-separating molecules is coupled to a fuel-driven, non-equilibrium reaction cycle. It thus yields dissipative structures sustained by a continuous fuel conversion. Such dissipative structures are ubiquitous in biology but are poorly understood as they are governed by non-equilibrium thermodynamics. Here, we bridge the gap between passive, close-to-equilibrium, and active, dissipative structures with chemically fueled phase separation. We observe that spherical, active droplets can undergo a morphological transition into a liquid, spherical shell. We demonstrate that the mechanism is related to gradients of short-lived droplet material. We characterize how far out of equilibrium the spherical shell state is and the chemical power necessary to sustain it. Our work suggests alternative avenues for assembling complex stable morphologies, which might already be exploited to form membraneless organelles by cells.

Suggested Citation

  • Alexander M. Bergmann & Jonathan Bauermann & Giacomo Bartolucci & Carsten Donau & Michele Stasi & Anna-Lena Holtmannspötter & Frank Jülicher & Christoph A. Weber & Job Boekhoven, 2023. "Liquid spherical shells are a non-equilibrium steady state of active droplets," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42344-w
    DOI: 10.1038/s41467-023-42344-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42344-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42344-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nadia A. Erkamp & Tomas Sneideris & Hannes Ausserwöger & Daoyuan Qian & Seema Qamar & Jonathon Nixon-Abell & Peter George-Hyslop & Jeremy D. Schmit & David A. Weitz & Tuomas P. J. Knowles, 2023. "Spatially non-uniform condensates emerge from dynamically arrested phase separation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Carsten Donau & Fabian Späth & Marilyne Sosson & Brigitte A. K. Kriebisch & Fabian Schnitter & Marta Tena-Solsona & Hyun-Seo Kang & Elia Salibi & Michael Sattler & Hannes Mutschler & Job Boekhoven, 2020. "Active coacervate droplets as a model for membraneless organelles and protocells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Raghav R. Poudyal & Rebecca M. Guth-Metzler & Andrew J. Veenis & Erica A. Frankel & Christine D. Keating & Philip C. Bevilacqua, 2019. "Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. Omar A. Saleh & Sam Wilken & Todd M. Squires & Tim Liedl, 2023. "Vacuole dynamics and popping-based motility in liquid droplets of DNA," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Alessandro Sorrenti & Jorge Leira-Iglesias & Akihiro Sato & Thomas M. Hermans, 2017. "Non-equilibrium steady states in supramolecular polymerization," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    6. Björn Drobot & Juan M. Iglesias-Artola & Kristian Vay & Viktoria Mayr & Mrityunjoy Kar & Moritz Kreysing & Hannes Mutschler & T-Y Dora Tang, 2018. "Compartmentalised RNA catalysis in membrane-free coacervate protocells," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso P. Fraccia & Nicolas Martin, 2023. "Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Shoupeng Cao & Tsvetomir Ivanov & Julian Heuer & Calum T. J. Ferguson & Katharina Landfester & Lucas Caire da Silva, 2024. "Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Jiahua Wang & Manzar Abbas & Junyou Wang & Evan Spruijt, 2023. "Selective amide bond formation in redox-active coacervate protocells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Andrea Testa & Mirco Dindo & Aleksander A. Rebane & Babak Nasouri & Robert W. Style & Ramin Golestanian & Eric R. Dufresne & Paola Laurino, 2021. "Sustained enzymatic activity and flow in crowded protein droplets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Peiying Li & Philipp Holliger & Shunsuke Tagami, 2022. "Hydrophobic-cationic peptides modulate RNA polymerase ribozyme activity by accretion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Avik Samanta & Maximilian Hörner & Wei Liu & Wilfried Weber & Andreas Walther, 2022. "Signal-processing and adaptive prototissue formation in metabolic DNA protocells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Avigail Baruch Leshem & Sian Sloan-Dennison & Tlalit Massarano & Shavit Ben-David & Duncan Graham & Karen Faulds & Hugo E. Gottlieb & Jordan H. Chill & Ayala Lampel, 2023. "Biomolecular condensates formed by designer minimalistic peptides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Annalena Salditt & Leonie Karr & Elia Salibi & Kristian Vay & Dieter Braun & Hannes Mutschler, 2023. "Ribozyme-mediated RNA synthesis and replication in a model Hadean microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Jingjing Li & Yihan Cui & Yi-Lin Lu & Yunfei Zhang & Kaihuang Zhang & Chaonan Gu & Kaifang Wang & Yujia Liang & Chun-Sen Liu, 2023. "Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Vincent Ouazan-Reboul & Jaime Agudo-Canalejo & Ramin Golestanian, 2023. "Self-organization of primitive metabolic cycles due to non-reciprocal interactions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Sihan Tang & Jiang Gong & Yunsong Shi & Shifeng Wen & Qiang Zhao, 2022. "Spontaneous water-on-water spreading of polyelectrolyte membranes inspired by skin formation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Agustín Mangiarotti & Macarena Siri & Nicky W. Tam & Ziliang Zhao & Leonel Malacrida & Rumiana Dimova, 2023. "Biomolecular condensates modulate membrane lipid packing and hydration," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    14. Songyang Liu & Yanwen Zhang & Xiaoxiao He & Mei Li & Jin Huang & Xiaohai Yang & Kemin Wang & Stephen Mann & Jianbo Liu, 2022. "Signal processing and generation of bioactive nitric oxide in a model prototissue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Ryou Kubota & Masahiro Makuta & Ryo Suzuki & Masatoshi Ichikawa & Motomu Tanaka & Itaru Hamachi, 2020. "Force generation by a propagating wave of supramolecular nanofibers," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    16. Damian Wollny & Benjamin Vernot & Jie Wang & Maria Hondele & Aram Safrastyan & Franziska Aron & Julia Micheel & Zhisong He & Anthony Hyman & Karsten Weis & J. Gray Camp & T.‐Y. Dora Tang & Barbara Tre, 2022. "Characterization of RNA content in individual phase-separated coacervate microdroplets," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Saumyak Mukherjee & Lars V. Schäfer, 2023. "Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Elia Salibi & Benedikt Peter & Petra Schwille & Hannes Mutschler, 2023. "Periodic temperature changes drive the proliferation of self-replicating RNAs in vesicle populations," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42344-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.