IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61282-3.html
   My bibliography  Save this article

Topological hysteretic winding for temporal anti-lasing

Author

Listed:
  • Haoye Qin

    (EPFL)

  • Zhe Zhang

    (EPFL)

  • Junda Wang

    (EPFL)

  • Romain Fleury

    (EPFL)

Abstract

Coherent perfect absorption (CPA), or anti-lasing, has been so far inherently restricted to continuous wave scenarios, drastically restricting its applications to standard linear steady-state systems. However, future technologies based on enhanced light-matter interactions typically require the dynamic emission and absorption of pulses, as in ultrafast optics, frequency-comb technologies, or spiking neuromorphic networks. Here, we propose to extend the reach of anti-lasing to pulsed operation. We unveil the phenomenon of fast temporal anti-lasing, in which perfect absorption of photons occurs transiently over ultrashort time scales, creating fast absorption pulses associated with broadband absorption frequency combs. This is obtained by leveraging robust topological transitions occurring in a hysteretic scattering system, which is temporally modulated to loop near a CPA singularity. Our work evidences the interplay between intrinsic memory and topology in wave scattering, unveiling the rich physics of Floquet engineering through topological switching. We envision applications in spiking photonic networks with robust emission, routing and detection of spikes, which may form the basis for future analog neuromorphic hardware.

Suggested Citation

  • Haoye Qin & Zhe Zhang & Junda Wang & Romain Fleury, 2025. "Topological hysteretic winding for temporal anti-lasing," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61282-3
    DOI: 10.1038/s41467-025-61282-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61282-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61282-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dongha Kim & Arthur Baucour & Yun-Seok Choi & Jonghwa Shin & Min-Kyo Seo, 2022. "Spontaneous generation and active manipulation of real-space optical vortices," Nature, Nature, vol. 611(7934), pages 48-54, November.
    2. Chengpeng Jiang & Honghuan Xu & Lu Yang & Jiaqi Liu & Yue Li & Kuniharu Takei & Wentao Xu, 2024. "Neuromorphic antennal sensory system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Haoye Qin & Zengping Su & Zhe Zhang & Wenjing Lv & Zijin Yang & Weijin Chen & Xinyue Gao & Heng Wei & Yuzhi Shi & Bo Li & Ji Zhou & Romain Fleury & Cheng-Wei Qiu & Qinghua Song, 2025. "Disorder-assisted real–momentum topological photonic crystal," Nature, Nature, vol. 639(8055), pages 602-608, March.
    4. Philip A. Thomas & Kishan S. Menghrajani & William L. Barnes, 2022. "All-optical control of phase singularities using strong light-matter coupling," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Gui-Geng Liu & Zhen Gao & Qiang Wang & Xiang Xi & Yuan-Hang Hu & Maoren Wang & Chengqi Liu & Xiao Lin & Longjiang Deng & Shengyuan A. Yang & Peiheng Zhou & Yihao Yang & Yidong Chong & Baile Zhang, 2022. "Topological Chern vectors in three-dimensional photonic crystals," Nature, Nature, vol. 609(7929), pages 925-930, September.
    6. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    7. M. Prezioso & M. R. Mahmoodi & F. Merrikh Bayat & H. Nili & H. Kim & A. Vincent & D. B. Strukov, 2018. "Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Yan, Dengwei & Wang, Lidan & Duan, Shukai & Chen, Jiaojiao & Chen, Jiahao, 2021. "Chaotic Attractors Generated by a Memristor-Based Chaotic System and Julia Fractal," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    7. Liu, Shuxin & Yu, Yongguang & Zhang, Shuo & Zhang, Yuting, 2018. "Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 845-854.
    8. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    9. Chen, Qun & Li, Bo & Yin, Wei & Jiang, Xiaowei & Chen, Xiangyong, 2023. "Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    10. Stavrinides, Stavros G. & Hanias, Michael P. & Gonzalez, Mireia B. & Campabadal, Francesca & Contoyiannis, Yiannis & Potirakis, Stelios M. & Al Chawa, Mohamad Moner & de Benito, Carol & Tetzlaff, Rona, 2022. "On the chaotic nature of random telegraph noise in unipolar RRAM memristor devices," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Pu, Hao & Li, Fengjun & Wang, Qingyun & Ran, Jie, 2025. "Hybrid projective synchronization of complex-valued memristive neural networks via concise prescribed-time control strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 665(C).
    12. Li, Liangchen & Xu, Rui & Lin, Jiazhe, 2020. "Lagrange stability for uncertain memristive neural networks with Lévy noise and leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    13. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Sakthivel, R. & Anbuvithya, R. & Mathiyalagan, K. & Ma, Yong-Ki & Prakash, P., 2016. "Reliable anti-synchronization conditions for BAM memristive neural networks with different memductance functions," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 213-228.
    15. Liying Xu & Jiadi Zhu & Bing Chen & Zhen Yang & Keqin Liu & Bingjie Dang & Teng Zhang & Yuchao Yang & Ru Huang, 2022. "A distributed nanocluster based multi-agent evolutionary network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Hua, Wentao & Wang, Yantao & Liu, Chunyan, 2024. "New method for global exponential synchronization of multi-link memristive neural networks with three kinds of time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 471(C).
    17. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    18. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    19. Zhou, Mingjie & Li, Guodong & Pan, Hepeng & Song, Xiaoming, 2025. "Discrete memristive hyperchaotic map with heterogeneous and homogeneous multistability and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    20. Yongxiang Li & Shiqing Wang & Ke Yang & Yuchao Yang & Zhong Sun, 2024. "An emergent attractor network in a passive resistive switching circuit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61282-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.