IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61254-7.html
   My bibliography  Save this article

Bat-specific adaptations in interferon signaling and GBP1 contribute to enhanced antiviral capacity

Author

Listed:
  • Victoria Gonzalez

    (University of Saskatchewan
    University of Saskatchewan)

  • Briallen Lobb

    (University of Waterloo)

  • Jacob Côté

    (Faculté des Sciences et de Génie Université Laval
    Université Laval
    Université Laval
    Université Laval)

  • Arkadeb Bhuinya

    (University of Saskatchewan
    University of Saskatchewan)

  • Adriana G. Tubb

    (Guildford)

  • Stephen S. Nuthalapati

    (Guildford)

  • Akarin Asavajaru

    (University of Saskatchewan)

  • Yan Zhou

    (University of Saskatchewan
    University of Saskatchewan)

  • Vikram Misra

    (University of Saskatchewan)

  • Darryl Falzarano

    (University of Saskatchewan
    University of Saskatchewan)

  • Trevor R. Sweeney

    (Guildford
    University of Cambridge)

  • Sophie M. C. Gobeil

    (Faculté des Sciences et de Génie Université Laval
    Université Laval
    Université Laval
    Université Laval)

  • Linfa Wang

    (Duke-NUS Medical School)

  • Andrew C. Doxey

    (University of Waterloo)

  • Arinjay Banerjee

    (University of Saskatchewan
    University of Saskatchewan
    University of Waterloo
    University of Toronto)

Abstract

Bats are reservoirs of emerging zoonotic viruses that may cause severe disease in humans and agricultural animals. However, it is poorly understood how bats can tolerate diverse viral infections. Here, we characterized type I interferon response pathways in kidney cell lines derived from two divergent bat species, Pteropus alecto and Eptesicus fuscus, identifying distinct mechanisms underlying their enhanced control of viral infection. We demonstrate the critical roles of STAT1/STAT2 in IFNβ signaling, along with species-specific adaptations that contribute towards a steady and ready antiviral state. Unlike in humans, bat IFNβ signaling processes resist the immune antagonistic properties of MERS-CoV which further explains the ability of bats to tolerate coronavirus infections. Transcriptomic analysis on interferon stimulated cell lines identified canonical and non-canonical interferon stimulated genes including two differentially expressed genes, IFIT1 and GBP1, that exhibit enhanced antiviral activity against a wide range of viruses, including the bat-derived Eptesipoxvirus. We have identified a functional (AV1) motif within E. fuscus GBP1 that restricts Eptesipoxvirus replication. Ultimately, our work provides important insights into the evolution of enhanced interferon-mediated antiviral responses in bats, contributing to their ability to resist viral diseases.

Suggested Citation

  • Victoria Gonzalez & Briallen Lobb & Jacob Côté & Arkadeb Bhuinya & Adriana G. Tubb & Stephen S. Nuthalapati & Akarin Asavajaru & Yan Zhou & Vikram Misra & Darryl Falzarano & Trevor R. Sweeney & Sophie, 2025. "Bat-specific adaptations in interferon signaling and GBP1 contribute to enhanced antiviral capacity," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61254-7
    DOI: 10.1038/s41467-025-61254-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61254-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61254-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 630(8016), pages 493-500, June.
    2. Ariadna E. Morales & Yue Dong & Thomas Brown & Kaushal Baid & Dimitrios - Georgios Kontopoulos & Victoria Gonzalez & Zixia Huang & Alexis-Walid Ahmed & Arkadeb Bhuinya & Leon Hilgers & Sylke Winkler &, 2025. "Bat genomes illuminate adaptations to viral tolerance and disease resistance," Nature, Nature, vol. 638(8050), pages 449-458, February.
    3. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 636(8042), pages 4-4, December.
    4. Agnidipta Ghosh & Gerrit J. K. Praefcke & Louis Renault & Alfred Wittinghofer & Christian Herrmann, 2006. "How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP," Nature, Nature, vol. 440(7080), pages 101-104, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Justin Riper & Arleth O. Martinez-Claros & Lie Wang & Hannah E. Schneiderman & Sweta Maheshwari & Monica C. Pillon, 2025. "CryoEM structure of the SLFN14 endoribonuclease reveals insight into RNA binding and cleavage," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    4. Chongbing Liao & Qihui Liu & Gan Luo & Yinyue Luo & Dan Yao & Qingxia Wang & Jue Zhang & Yang Wu & Jialin Jin & Dan Xu & Wuyuan Lu, 2025. "Human neutrophil α-defensin HNP1 interacts with bacterial OmpA to promote Acinetobacter baumannii biofilm formation," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    5. Julian O. Streit & Sammy H. S. Chan & Saifu Daya & John Christodoulou, 2025. "Rational design of 19F NMR labelling sites to probe protein structure and interactions," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    6. Yu Zhang & Tingting Zhang & Xue Xiao & Yejun Wang & Adam Kawalek & Jinzhao Ou & Anmin Ren & Wenhao Sun & Vincent Bakker & Yujie Liu & Yuelong Li & Liang Yang & Liang Ye & Ning Jia & Jan-Willem Veening, 2025. "CRISPRi screen identifies FprB as a synergistic target for gallium therapy in Pseudomonas aeruginosa," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    7. Ai Tamura & Kazuyuki Yamagata & Takashi Kono & Masanori Fujimoto & Takahiro Fuchigami & Motoi Nishimura & Masataka Yokoyama & Akitoshi Nakayama & Naoko Hashimoto & Ikki Sakuma & Nobuyuki Mitsukawa & Y, 2025. "p53-inducible lncRNA LOC644656 causes genotoxic stress-induced stem cell maldifferentiation and cancer chemoresistance," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    8. Gašper Šolinc & Marija Srnko & Franci Merzel & Ana Crnković & Mirijam Kozorog & Marjetka Podobnik & Gregor Anderluh, 2025. "Cryo-EM structures of a protein pore reveal a cluster of cholesterol molecules and diverse roles of membrane lipids," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Tae-Kyeong Jeong & R. Ciaran MacKenzie Frater & Jongha Yoon & Anja Groth & Ji-Joon Song, 2025. "CODANIN-1 sequesters ASF1 by using a histone H3 mimic helix to regulate the histone supply," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    10. Juan G. Carvajal-Patiño & Vincent Mallet & David Becerra & Luis Fernando Niño Vasquez & Carlos Oliver & Jérôme Waldispühl, 2025. "RNAmigos2: accelerated structure-based RNA virtual screening with deep graph learning," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Wenkai Chen & Xueying Xu & Zhidan Zeng & Mingsen Zhou & Jiying Chen & Guangfu Hu & Anfu Shen & Dapeng Li & Liu Xiangjiang, 2025. "The role of pyruvate dehydrogenase in the lifespan determination of daphnids," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    12. John R. Horton & Meigen Yu & Jujun Zhou & Melody Tran & Rithvi R. Anakal & Yue Lu & Robert M. Blumenthal & Xiaotian Zhang & Yun Huang & Xing Zhang & Xiaodong Cheng, 2025. "Multimeric transcription factor BCL11A utilizes two zinc-finger tandem arrays to bind clustered short sequence motifs," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    13. Elisa Posani & Pavel Janoš & Daniel Haack & Navtej Toor & Massimiliano Bonomi & Alessandra Magistrato & Giovanni Bussi, 2025. "Ensemble refinement of mismodeled cryo-EM RNA structures using all-atom simulations," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Stephen A. Rettie & Katelyn V. Campbell & Asim K. Bera & Alex Kang & Simon Kozlov & Yensi Flores Bueso & Joshmyn Cruz & Maggie Ahlrichs & Suna Cheng & Stacey R. Gerben & Mila Lamb & Analisa Murray & V, 2025. "Cyclic peptide structure prediction and design using AlphaFold2," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    15. Melissa V. Gammons & Elsa Franco-Echevarría & Tie-Mei Li & Trevor J. Rutherford & Miha Renko & Christopher Batters & Mariann Bienz, 2025. "Wnt signalosome assembly is governed by conformational flexibility of Axin and by the AP2 clathrin adaptor," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    16. Xiaofei Jiao & Zhongyang Liang & Jiwei Li & Long Bai & Jun Xu & Yidan Liu & Lin-Yu Lu, 2025. "Aberrant activation of chromosome asynapsis checkpoint triggers oocyte elimination," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    17. Heqin Zhu & Fenghe Tang & Quan Quan & Ke Chen & Peng Xiong & S. Kevin Zhou, 2025. "Deep generalizable prediction of RNA secondary structure via base pair motif energy," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    18. Clinton Yu & Eric Novitsky & Sree Ganesh Balasubramani & Xiaorong Wang & Xiyu Shen & Qin Yang & Scott Rychnovsky & Ignacia Echeverria & Lan Huang, 2025. "Trioxane-based MS-cleavable cross-linking mass spectrometry for profiling multimeric interactions of cellular networks," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    19. Chan Seok Lim & Jisun Lee & Ji Won Kim & Jie-Oh Lee, 2025. "Highly ordered clustering of TNFα and BAFF ligand-receptor-intracellular adaptor complexes on a lipid membrane," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    20. Wenhan Fu & Jiacheng Ma & Zhipeng Wang & Na Tang & Deng Pan & Mengjiao Su & Zhaowei Wu & Jianhua Gan & Quanjiang Ji, 2025. "Mechanisms and engineering of a miniature type V-N CRISPR-Cas12 effector enzyme," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61254-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.