IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61233-y.html
   My bibliography  Save this article

Cryo-EM of wild-type and mutant PMEL amyloid cores reveals structural mechanism of pigment dispersion syndrome

Author

Listed:
  • Haruaki Yanagisawa

    (the University of Tokyo)

  • Harumi Arai

    (University of Yamanashi)

  • Tony Wang

    (the University of Tokyo)

  • Hideyuki Miyazawa

    (University of Yamanashi)

  • Masahide Kikkawa

    (the University of Tokyo)

  • Toshiyuki Oda

    (University of Yamanashi)

Abstract

PMEL amyloids serve as essential scaffolds for melanin deposition in melanosomes, playing a crucial role in pigmentation. Despite their importance, the high-resolution structure of PMEL amyloids has remained unresolved. Using cryo-electron microscopy, we determine near-atomic resolution structures of wild-type PMEL amyloid core, revealing two distinct polymorphic forms with structural features. We further investigate the pathogenic G175S mutation associated with pigment dispersion syndrome (PDS). Structural analysis reveales that G175S introduces an additional hydrogen bond, stabilizing an alternative fibril conformation. In vitro, the G175S mutant exhibits a fourfold increase in polymerization efficiency compared to the wild type. In cells, G175S expression resultes in a twofold increase in intracellular amyloid content and a ~70% increase in extracellular amyloids, without altering melanosome morphology or number. These results indicate that the G175S mutation enhances amyloidogenesis within melanosomes, elevating amyloid load and potentially contributing to PDS pathophysiology. This study provides molecular insights into PMEL amyloid formation, highlighting its structural diversity and dysregulation in pigmentation disorders.

Suggested Citation

  • Haruaki Yanagisawa & Harumi Arai & Tony Wang & Hideyuki Miyazawa & Masahide Kikkawa & Toshiyuki Oda, 2025. "Cryo-EM of wild-type and mutant PMEL amyloid cores reveals structural mechanism of pigment dispersion syndrome," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61233-y
    DOI: 10.1038/s41467-025-61233-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61233-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61233-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kiarash Jamali & Lukas Käll & Rui Zhang & Alan Brown & Dari Kimanius & Sjors H. W. Scheres, 2024. "Automated model building and protein identification in cryo-EM maps," Nature, Nature, vol. 628(8007), pages 450-457, April.
    2. Li-Qiang Wang & Yeyang Ma & Han-Ye Yuan & Kun Zhao & Mu-Ya Zhang & Qiang Wang & Xi Huang & Wen-Chang Xu & Bin Dai & Jie Chen & Dan Li & Delin Zhang & Zhengzhi Wang & Liangyu Zou & Ping Yin & Cong Liu , 2022. "Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Maximilian Steinebrei & Juliane Gottwald & Julian Baur & Christoph Röcken & Ute Hegenbart & Stefan Schönland & Matthias Schmidt, 2022. "Cryo-EM structure of an ATTRwt amyloid fibril from systemic non-hereditary transthyretin amyloidosis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Matthias Schmidt & Sebastian Wiese & Volkan Adak & Jonas Engler & Shubhangi Agarwal & Günter Fritz & Per Westermark & Martin Zacharias & Marcus Fändrich, 2019. "Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Lynn Radamaker & Yin-Hsi Lin & Karthikeyan Annamalai & Stefanie Huhn & Ute Hegenbart & Stefan O. Schönland & Günter Fritz & Matthias Schmidt & Marcus Fändrich, 2019. "Cryo-EM structure of a light chain-derived amyloid fibril from a patient with systemic AL amyloidosis," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Karimi-Farsijani & Peter Benedikt Pfeiffer & Sambhasan Banerjee & Julian Baur & Lukas Kuhn & Niklas Kupfer & Ute Hegenbart & Stefan O. Schönland & Sebastian Wiese & Christian Haupt & Matthias Sch, 2024. "Light chain mutations contribute to defining the fibril morphology in systemic AL amyloidosis," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Binh An Nguyen & Virender Singh & Shumaila Afrin & Anna Yakubovska & Lanie Wang & Yasmin Ahmed & Rose Pedretti & Maria del Carmen Fernandez-Ramirez & Preeti Singh & Maja Pękała & Luis O. Cabrera Herna, 2024. "Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Irina Iakovleva & Michael Hall & Melanie Oelker & Linda Sandblad & Intissar Anan & A. Elisabeth Sauer-Eriksson, 2021. "Structural basis for transthyretin amyloid formation in vitreous body of the eye," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Maximilian Steinebrei & Julian Baur & Anaviggha Pradhan & Niklas Kupfer & Sebastian Wiese & Ute Hegenbart & Stefan O. Schönland & Matthias Schmidt & Marcus Fändrich, 2023. "Common transthyretin-derived amyloid fibril structures in patients with hereditary ATTR amyloidosis," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Sara Karimi-Farsijani & Kartikay Sharma & Marijana Ugrina & Lukas Kuhn & Peter Benedikt Pfeiffer & Christian Haupt & Sebastian Wiese & Ute Hegenbart & Stefan O. Schönland & Nadine Schwierz & Matthias , 2024. "Cryo-EM structure of a lysozyme-derived amyloid fibril from hereditary amyloidosis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Gemma Martinez-Rivas & Maria Victoria Ayala & Sebastien Bender & Gilles Roussine Codo & Weronika Karolina Swiderska & Alessio Lampis & Laura Pedroza & Melisa Merdanovic & Pierre Sicard & Emilie Pinaul, 2025. "A mouse model of cardiac immunoglobulin light chain amyloidosis reveals insights into tissue accumulation and toxicity of amyloid fibrils," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    7. Matthias Griessmann & Tim Rasmussen & Vanessa J. Flegler & Christian Kraft & Ronja Schneider & Max Hateley & Lukas Spantzel & Mark P. Stevens & Michael Börsch & Bettina Böttcher, 2025. "Structure of lymphostatin, a large multi-functional virulence factor of pathogenic Escherichia coli," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    8. Alexander Stevens & Saarang Kashyap & Ethan H. Crofut & Shuqi E. Wang & Katherine A. Muratore & Patricia J. Johnson & Z. Hong Zhou, 2025. "Structures of Native Doublet Microtubules from Trichomonas vaginalis Reveal Parasite-Specific Proteins," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    9. David Herreros & Carlos Perez Mata & Chari Noddings & Deli Irene & James Krieger & David A. Agard & Ming-Daw Tsai & Carlos Oscar Sanchez Sorzano & Jose Maria Carazo, 2025. "Real-space heterogeneous reconstruction, refinement, and disentanglement of CryoEM conformational states with HetSIREN," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    10. Laura Shub & Wenjin Liu & Georgios Skiniotis & Michael J. Keiser & Michael J. Robertson, 2025. "MIC: A deep learning tool for assigning ions and waters in cryo-EM and crystal structures," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    11. Anjun Zheng & Bram J. A. Vermeulen & Martin Würtz & Annett Neuner & Nicole Lübbehusen & Matthias P. Mayer & Elmar Schiebel & Stefan Pfeffer, 2025. "Structural insights into the interplay between microtubule polymerases, γ-tubulin complexes and their receptors," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    12. Bozhidar S. Ivanov & Hannah R. Bridges & Owen D. Jarman & Judy Hirst, 2024. "Structure of the turnover-ready state of an ancestral respiratory complex I," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Qinyu Zhu & Madeleine F. Yaggi & Nikolaus Jork & Henning J. Jessen & Melinda M. Diver, 2025. "Transport and InsP8 gating mechanisms of the human inorganic phosphate exporter XPR1," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    14. Martin Wilkinson & Rodrigo U. Gallardo & Roberto Maya Martinez & Nicolas Guthertz & Masatomo So & Liam D. Aubrey & Sheena E. Radford & Neil A. Ranson, 2023. "Disease-relevant β2-microglobulin variants share a common amyloid fold," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Emily G. Saccuzzo & Mubark D. Mebrat & Hailee F. Scelsi & Minjoo Kim & Minh Thu Ma & Xinya Su & Shannon E. Hill & Elisa Rheaume & Renhao Li & Matthew P. Torres & James C. Gumbart & Wade D. Van Horn & , 2024. "Competition between inside-out unfolding and pathogenic aggregation in an amyloid-forming β-propeller," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Tim Schulte & Antonio Chaves-Sanjuan & Valentina Speranzini & Kevin Sicking & Melissa Milazzo & Giulia Mazzini & Paola Rognoni & Serena Caminito & Paolo Milani & Chiara Marabelli & Alessandro Corbelli, 2024. "Helical superstructures between amyloid and collagen in cardiac fibrils from a patient with AL amyloidosis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Hyunwook Lee & Ruben Assaraf & Suriyasri Subramanian & Dan Goetschius & Jan Bieri & Nadia M. DiNunno & Remo Leisi & Carol M. Bator & Susan L. Hafenstein & Carlos Ros, 2024. "Infectious parvovirus B19 circulates in the blood coated with active host protease inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Hui Zhang & Dihan Zheng & Qiurong Wu & Nieng Yan & Han Peng & Qi Hu & Ying Peng & Zhaofeng Yan & Zuoqiang Shi & Chenglong Bao & Mingxu Hu, 2025. "CryoPROS: Correcting misalignment caused by preferred orientation using AI-generated auxiliary particles," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    19. Masa Janosev & Dalibor Kosek & Andrej Tekel & Rohit Joshi & Karolina Honzejkova & Pavel Pohl & Tomas Obsil & Veronika Obsilova, 2025. "Structural basis of ubiquitin ligase Nedd4-2 autoinhibition and regulation by calcium and 14-3-3 proteins," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    20. Shikha Shikha & Victor Tobiasson & Mariana Ferreira Silva & Jana Ovciarikova & Dario Beraldi & Alexander Mühleip & Lilach Sheiner, 2025. "Numerous rRNA molecules form the apicomplexan mitoribosome via repurposed protein and RNA elements," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61233-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.