IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61149-7.html
   My bibliography  Save this article

Dissecting crosstalk induced by cell-cell communication using single-cell transcriptomic data

Author

Listed:
  • Jiawen Hou

    (University of California Irvine
    University of California Irvine)

  • Wei Zhao

    (University of California Irvine
    University of California Irvine)

  • Qing Nie

    (University of California Irvine
    University of California Irvine
    University of California Irvine)

Abstract

During cell-cell communication (CCC), pathways activated by different ligand-receptor pairs may have crosstalk with each other. While multiple methods have been developed to infer CCC networks and their downstream response using single-cell RNA-seq data (scRNA-seq), the potential crosstalk between pathways connecting CCC with its downstream targets has been ignored. Here we introduce a machine learning-based method SigXTalk to analyze the crosstalk using scRNA-seq data by quantifying signal fidelity and specificity, two critical quantities measuring the effect of crosstalk. Specifically, a hypergraph learning method is used to encode the higher-order relations among receptors, transcription factors and target genes within regulatory pathways. Benchmarking of SigXTalk using simulation and real-world data shows the effectiveness, robustness, and accuracy in identifying key shared molecules among crosstalk pathways and their roles in transferring shared CCC information. Analysis of disease data shows SigXTalk’s capability in identifying crucial signals, targets, regulatory networks, and CCC patterns that distinguish different disease conditions. Applications to the data with multiple time points reveals SigXTalk’s capability in tracking the evolution of crosstalk pathways over time. Together our studies provide a systematic analysis of CCC-induced regulatory networks from the perspective of crosstalk between pathways.

Suggested Citation

  • Jiawen Hou & Wei Zhao & Qing Nie, 2025. "Dissecting crosstalk induced by cell-cell communication using single-cell transcriptomic data," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61149-7
    DOI: 10.1038/s41467-025-61149-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61149-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61149-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johannes C. Melms & Jana Biermann & Huachao Huang & Yiping Wang & Ajay Nair & Somnath Tagore & Igor Katsyv & André F. Rendeiro & Amit Dipak Amin & Denis Schapiro & Chris J. Frangieh & Adrienne M. Luom, 2021. "Author Correction: A molecular single-cell lung atlas of lethal COVID-19," Nature, Nature, vol. 598(7882), pages 2-2, October.
    2. Suoqin Jin & Christian F. Guerrero-Juarez & Lihua Zhang & Ivan Chang & Raul Ramos & Chen-Hsiang Kuan & Peggy Myung & Maksim V. Plikus & Qing Nie, 2021. "Inference and analysis of cell-cell communication using CellChat," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    3. Siyang Leng & Huanfei Ma & Jürgen Kurths & Ying-Cheng Lai & Wei Lin & Kazuyuki Aihara & Luonan Chen, 2020. "Partial cross mapping eliminates indirect causal influences," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Kenji Kamimoto & Blerta Stringa & Christy M. Hoffmann & Kunal Jindal & Lilianna Solnica-Krezel & Samantha A. Morris, 2023. "Dissecting cell identity via network inference and in silico gene perturbation," Nature, Nature, vol. 614(7949), pages 742-751, February.
    5. Dikla Dotan-Cohen & Stan Letovsky & Avraham A Melkman & Simon Kasif, 2009. "Biological Process Linkage Networks," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-10, April.
    6. Maximilian Strunz & Lukas M. Simon & Meshal Ansari & Jaymin J. Kathiriya & Ilias Angelidis & Christoph H. Mayr & George Tsidiridis & Marius Lange & Laura F. Mattner & Min Yee & Paulina Ogar & Arunima , 2020. "Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis," Nature Communications, Nature, vol. 11(1), pages 1-20, December.
    7. Daniel Dimitrov & Dénes Türei & Martin Garrido-Rodriguez & Paul L. Burmedi & James S. Nagai & Charlotte Boys & Ricardo O. Ramirez Flores & Hyojin Kim & Bence Szalai & Ivan G. Costa & Alberto Valdeoliv, 2022. "Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. repec:plo:pcbi00:1002458 is not listed on IDEAS
    9. Jason D. Buenrostro & Beijing Wu & Ulrike M. Litzenburger & Dave Ruff & Michael L. Gonzales & Michael P. Snyder & Howard Y. Chang & William J. Greenleaf, 2015. "Single-cell chromatin accessibility reveals principles of regulatory variation," Nature, Nature, vol. 523(7561), pages 486-490, July.
    10. Xin Shao & Chengyu Li & Haihong Yang & Xiaoyan Lu & Jie Liao & Jingyang Qian & Kai Wang & Junyun Cheng & Penghui Yang & Huajun Chen & Xiao Xu & Xiaohui Fan, 2022. "Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Johannes C. Melms & Jana Biermann & Huachao Huang & Yiping Wang & Ajay Nair & Somnath Tagore & Igor Katsyv & André F. Rendeiro & Amit Dipak Amin & Denis Schapiro & Chris J. Frangieh & Adrienne M. Luom, 2021. "A molecular single-cell lung atlas of lethal COVID-19," Nature, Nature, vol. 595(7865), pages 114-119, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Leila R. Martins & Lina Sieverling & Michelle Michelhans & Chiara Schiller & Cihan Erkut & Thomas G. P. Grünewald & Sergio Triana & Stefan Fröhling & Lars Velten & Hanno Glimm & Claudia Scholl, 2024. "Single-cell division tracing and transcriptomics reveal cell types and differentiation paths in the regenerating lung," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Xin Pan & Lan Wang & Juntang Yang & Yingge Li & Min Xu & Chenxi Liang & Lulu Liu & Zhongzheng Li & Cong Xia & Jiaojiao Pang & Mengyuan Wang & Meng Li & Saiya Guo & Peishuo Yan & Chen Ding & Ivan O. Ro, 2024. "TRβ activation confers AT2-to-AT1 cell differentiation and anti-fibrosis during lung repair via KLF2 and CEBPA," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Laura Heydemann & Małgorzata Ciurkiewicz & Georg Beythien & Kathrin Becker & Klaus Schughart & Stephanie Stanelle-Bertram & Berfin Schaumburg & Nancy Mounogou-Kouassi & Sebastian Beck & Martin Zickler, 2023. "Hamster model for post-COVID-19 alveolar regeneration offers an opportunity to understand post-acute sequelae of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Benjamin Ng & Kevin Y. Huang & Chee Jian Pua & Sivakumar Viswanathan & Wei-Wen Lim & Fathima F. Kuthubudeen & Yu-Ning Liu & An An Hii & Benjamin L. George & Anissa A. Widjaja & Enrico Petretto & Stuar, 2024. "Interleukin-11 causes alveolar type 2 cell dysfunction and prevents alveolar regeneration," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Minzhe Guo & Michael P. Morley & Cheng Jiang & Yixin Wu & Guangyuan Li & Yina Du & Shuyang Zhao & Andrew Wagner & Adnan Cihan Cakar & Michal Kouril & Kang Jin & Nathan Gaddis & Joseph A. Kitzmiller & , 2023. "Guided construction of single cell reference for human and mouse lung," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Jimmy Tsz Hang Lee & Sam N. Barnett & Kenny Roberts & Helen Ashwin & Luke Milross & Jae-Won Cho & Alik Huseynov & Benjamin Woodhams & Alexander Aivazidis & Tong Li & Joaquim Majo & Patricia Chaves & M, 2025. "Integrated histopathology, spatial and single cell transcriptomics resolve cellular drivers of early and late alveolar damage in COVID-19," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    8. Mark A. Sanborn & Xinge Wang & Shang Gao & Yang Dai & Jalees Rehman, 2025. "Unveiling the cell-type-specific landscape of cellular senescence through single-cell transcriptomics using SenePy," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    9. Laura Heydemann & Małgorzata Ciurkiewicz & Theresa Störk & Isabel Zdora & Kirsten Hülskötter & Katharina Manuela Gregor & Lukas Mathias Michaely & Wencke Reineking & Tom Schreiner & Georg Beythien & A, 2025. "Respiratory long COVID in aged hamsters features impaired lung function post-exercise with bronchiolization and fibrosis," Nature Communications, Nature, vol. 16(1), pages 1-24, December.
    10. Christina Beck & Deepak Ramanujam & Paula Vaccarello & Florenc Widenmeyer & Martin Feuerherd & Cho-Chin Cheng & Anton Bomhard & Tatiana Abikeeva & Julia Schädler & Jan-Peter Sperhake & Matthias Graw &, 2023. "Trimannose-coupled antimiR-21 for macrophage-targeted inhalation treatment of acute inflammatory lung damage," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Sandra Curras-Alonso & Juliette Soulier & Thomas Defard & Christian Weber & Sophie Heinrich & Hugo Laporte & Sophie Leboucher & Sonia Lameiras & Marie Dutreix & Vincent Favaudon & Florian Massip & Tho, 2023. "An interactive murine single-cell atlas of the lung responses to radiation injury," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Dhiraj K. Singh & Ekaterina Aladyeva & Shibali Das & Bindu Singh & Ekaterina Esaulova & Amanda Swain & Mushtaq Ahmed & Journey Cole & Chivonne Moodley & Smriti Mehra & Larry S. Schlesinger & Maxim N. , 2022. "Myeloid cell interferon responses correlate with clearance of SARS-CoV-2," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Xiaolei Wang & Terrence Tsz-Tai Yuen & Ying Dou & Jingchu Hu & Renhao Li & Zheng Zeng & Xuansheng Lin & Huarui Gong & Celia Hoi-Ching Chan & Chaemin Yoon & Huiping Shuai & Deborah Tip-Yin Ho & Ivan Fa, 2023. "Vaccine-induced protection against SARS-CoV-2 requires IFN-γ-driven cellular immune response," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Gregory Farber & Yanhan Dong & Qiaozi Wang & Mitesh Rathod & Haofei Wang & Michelle Dixit & Benjamin Keepers & Yifang Xie & Kendall Butz & William J. Polacheck & Jiandong Liu & Li Qian, 2024. "Direct conversion of cardiac fibroblasts into endothelial-like cells using Sox17 and Erg," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Aleksandr Ianevski & Anil K. Giri & Tero Aittokallio, 2022. "Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Suzanne Pickering & Harry Wilson & Enrico Bravo & Marianne R. Perera & Jeffrey Seow & Carl Graham & Nathalia Almeida & Lazaros Fotopoulos & Thomas Williams & Atlanta Moitra & Helena Winstone & Tinne A, 2024. "Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Yoshiharu Muto & Eryn E. Dixon & Yasuhiro Yoshimura & Haojia Wu & Kohei Omachi & Nicolas Ledru & Parker C. Wilson & Andrew J. King & N. Eric Olson & Marvin G. Gunawan & Jay J. Kuo & Jennifer H. Cox & , 2022. "Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Kuei-Pin Chung & Chih-Ning Cheng & Yi-Jung Chen & Chia-Lang Hsu & Yen-Lin Huang & Min-Shu Hsieh & Han-Chun Kuo & Ya-Ting Lin & Yi-Hsiu Juan & Kiichi Nakahira & Yen-Fu Chen & Wei-Lun Liu & Sheng-Yuan R, 2024. "Alveolar epithelial cells mitigate neutrophilic inflammation in lung injury through regulating mitochondrial fatty acid oxidation," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    19. Mayra Cruz Tleugabulova & Sandra P. Melo & Aaron Wong & Alexander Arlantico & Meizi Liu & Joshua D. Webster & Julia Lau & Antonie Lechner & Basak Corak & Jonathan J. Hodgins & Venkata S. Garlapati & M, 2024. "Induction of a distinct macrophage population and protection from lung injury and fibrosis by Notch2 blockade," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Maik Pietzner & Robert Lorenz Chua & Eleanor Wheeler & Katharina Jechow & Julian D. S. Willett & Helena Radbruch & Saskia Trump & Bettina Heidecker & Hugo Zeberg & Frank L. Heppner & Roland Eils & Mar, 2022. "ELF5 is a potential respiratory epithelial cell-specific risk gene for severe COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61149-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.