IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61132-2.html
   My bibliography  Save this article

Highly efficient and stable ethanol electrosynthesis from carbon dioxide at −250 mA cm−2

Author

Listed:
  • Hong Liu

    (Jiangsu University
    Jiangsu University of Science and Technology)

  • Yu Yu

    (Jiangsu University of Science and Technology)

  • Ye Bai

    (Jiangsu University)

  • Yingchen Yang

    (Jiangsu University)

  • Yaoxuan Wang

    (Jiangsu University)

  • Woyuan Li

    (Jiangsu University)

  • Longhua Li

    (Jiangsu University)

  • Jinhui Hao

    (Jiangsu University)

  • Weidong Shi

    (Jiangsu University
    Jiangsu University of Science and Technology)

Abstract

The electrocatalytic reduction of carbon dioxide (CO2RR) to ethanol (C2H5OH) represents notable research significance and commercial value in large-scale chemical production. However, the limited selectivity for C2H5OH and the uncontrollable changes in active sites during reaction process restrict the ability of catalyst to achieve stable and efficient CO2RR to C2H5OH at industrial current density. Here, we report a system that immunizes the reconstruction of catalytic active sites, where the CuAg catalytic centers are protected by nitrilotriacetic acid (NTA). Importantly, the constructed CuAg@NTA catalyst exhibits low barriers for C-C coupling and hydrogenation of *CH2CHO to *CH3CH2O. Consequently, the catalyst achieves a high ethanol faradaic efficiency (FEC2H5OH) of 87.21% with a partial current density of −218.03 mA cm−2. Furthermore, the catalyst maintaining over 70% of FEC2H5OH after 300 h at −250 mA cm−2, which are leading among previously reported catalysts in the selectivity and stability of CO2RR to C2H5OH at industrial current density. This study provides insights into the selectivity and stability enhancement of catalysts for electrocatalytic CO2RR to C2H5OH.

Suggested Citation

  • Hong Liu & Yu Yu & Ye Bai & Yingchen Yang & Yaoxuan Wang & Woyuan Li & Longhua Li & Jinhui Hao & Weidong Shi, 2025. "Highly efficient and stable ethanol electrosynthesis from carbon dioxide at −250 mA cm−2," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61132-2
    DOI: 10.1038/s41467-025-61132-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61132-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61132-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haiping Xu & Dominic Rebollar & Haiying He & Lina Chong & Yuzi Liu & Cong Liu & Cheng-Jun Sun & Tao Li & John V. Muntean & Randall E. Winans & Di-Jia Liu & Tao Xu, 2020. "Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper," Nature Energy, Nature, vol. 5(8), pages 623-632, August.
    2. Miao Zhong & Kevin Tran & Yimeng Min & Chuanhao Wang & Ziyun Wang & Cao-Thang Dinh & Phil De Luna & Zongqian Yu & Armin Sedighian Rasouli & Peter Brodersen & Song Sun & Oleksandr Voznyy & Chih-Shan Ta, 2020. "Accelerated discovery of CO2 electrocatalysts using active machine learning," Nature, Nature, vol. 581(7807), pages 178-183, May.
    3. Pengtang Wang & Hao Yang & Cheng Tang & Yu Wu & Yao Zheng & Tao Cheng & Kenneth Davey & Xiaoqing Huang & Shi-Zhang Qiao, 2022. "Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yongxiang Liang & Jiankang Zhao & Yu Yang & Sung-Fu Hung & Jun Li & Shuzhen Zhang & Yong Zhao & An Zhang & Cheng Wang & Dominique Appadoo & Lei Zhang & Zhigang Geng & Fengwang Li & Jie Zeng, 2023. "Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Jie Ding & Hong Yang & Xue-Lu Ma & Song Liu & Wei Liu & Qing Mao & Yanqiang Huang & Jun Li & Tao Zhang & Bin Liu, 2023. "A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity," Nature Energy, Nature, vol. 8(12), pages 1386-1394, December.
    6. Nur Syahirah Mohamed Hatta & Mohamed Kheireddine Aroua & Farihahusnah Hussin & Lai Ti Gew, 2022. "A Systematic Review of Amino Acid-Based Adsorbents for CO 2 Capture," Energies, MDPI, vol. 15(10), pages 1-34, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanxing Zhang & Ning Cao & Chentao Wang & Shengxiang Wang & Yi He & Yao Shi & Mi Yan & Ying Bao & Zhenglong Li & Pengfei Xie, 2025. "In situ stabilization of Cu+ for CO2 Electroreduction via Environmental-molecules-induced ZnO1-x shield," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Shifu Wang & Fuhua Li & Jian Zhao & Yaqiong Zeng & Yifan Li & Zih-Yi Lin & Tsung-Ju Lee & Shuhui Liu & Xinyi Ren & Weijue Wang & Yusen Chen & Sung-Fu Hung & Ying-Rui Lu & Yi Cui & Xiaofeng Yang & Xuni, 2024. "Manipulating C-C coupling pathway in electrochemical CO2 reduction for selective ethylene and ethanol production over single-atom alloy catalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Jian Cheng & Ling Chen & Yanzhi Zhang & Min Wang & Zhangyi Zheng & Lin Jiang & Zhao Deng & Zhihe Wei & Mutian Ma & Likun Xiong & Wei Hua & Daqi Song & Wenxuan Huo & Yuebin Lian & Wenjun Yang & Fenglei, 2025. "Metal-organic double layer to stabilize selective multi-carbon electrosynthesis," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    4. Xiaodong Li & Li Li & Xiaohui Liu & Jiaqi Xu & Xingyuan Chu & Guangbo Chen & Dongqi Li & Mingchao Wang & Xia Wang & Chandrasekhar Naisa & Jing Gao & Yongfu Sun & Michael Grätzel & Xinliang Feng, 2025. "Designing multi-metal-site nanosheet catalysts for CO2 photoreduction to ethylene," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Yong Zhang & Feifei Chen & Xinyi Yang & Yiran Guo & Xinghua Zhang & Hong Dong & Weihua Wang & Feng Lu & Zunming Lu & Hui Liu & Hui Liu & Yao Xiao & Yahui Cheng, 2025. "Electronic metal-support interaction modulates Cu electronic structures for CO2 electroreduction to desired products," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. Kaihang Yue & Yanyang Qin & Honghao Huang & Zhuoran Lv & Mingzhi Cai & Yaqiong Su & Fuqiang Huang & Ya Yan, 2024. "Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Jiaqi Feng & Limin Wu & Xinning Song & Libing Zhang & Shunhan Jia & Xiaodong Ma & Xingxing Tan & Xinchen Kang & Qinggong Zhu & Xiaofu Sun & Buxing Han, 2024. "CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La-Cu spheres with channels," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Bo Peng & Hao She & Zihao Wei & Zhiyi Sun & Ziwei Deng & Zhongti Sun & Wenxing Chen, 2025. "Sulfur-doping tunes p-d orbital coupling over asymmetric Zn-Sn dual-atom for boosting CO2 electroreduction to formate," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Zhonghao Tan & Jianling Zhang & Yisen Yang & Jiajun Zhong & Yingzhe Zhao & Yunan Teng & Buxing Han & Zhongjun Chen, 2025. "Polymeric ionic liquid promotes acidic electrocatalytic CO2 conversion to multicarbon products with ampere level current on Cu," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    10. Weihua Guo & Siwei Zhang & Junjie Zhang & Haoran Wu & Yangbo Ma & Yun Song & Le Cheng & Liang Chang & Geng Li & Yong Liu & Guodan Wei & Lin Gan & Minghui Zhu & Shibo Xi & Xue Wang & Boris I. Yakobson , 2023. "Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Xiao Chen & Shuaiqiang Jia & Jianxin Zhai & Jiapeng Jiao & Mengke Dong & Cheng Xue & Ting Deng & Hailian Cheng & Zhanghui Xia & Chunjun Chen & Xueqing Xing & Jianrong Zeng & Haihong Wu & Mingyuan He &, 2024. "Multivalent Cu sites synergistically adjust carbonaceous intermediates adsorption for electrocatalytic ethanol production," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Kaiyuan Liu & Hao Shen & Zhiyi Sun & Qiang Zhou & Guoqiang Liu & Zhongti Sun & Wenxing Chen & Xin Gao & Pengwan Chen, 2025. "Transient pulsed discharge preparation of graphene aerogel supports asymmetric Cu cluster catalysts promote CO2 electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Xin Yu Zhang & Zhen Xin Lou & Jiacheng Chen & Yuanwei Liu & Xuefeng Wu & Jia Yue Zhao & Hai Yang Yuan & Minghui Zhu & Sheng Dai & Hai Feng Wang & Chenghua Sun & Peng Fei Liu & Hua Gui Yang, 2023. "Direct OC-CHO coupling towards highly C2+ products selective electroreduction over stable Cu0/Cu2+ interface," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Cheng Du & Joel P. Mills & Asfaw G. Yohannes & Wei Wei & Lei Wang & Siyan Lu & Jian-Xiang Lian & Maoyu Wang & Tao Guo & Xiyang Wang & Hua Zhou & Cheng-Jun Sun & John Z. Wen & Brian Kendall & Martin Co, 2023. "Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Yongxiang Liang & Jiankang Zhao & Yu Yang & Sung-Fu Hung & Jun Li & Shuzhen Zhang & Yong Zhao & An Zhang & Cheng Wang & Dominique Appadoo & Lei Zhang & Zhigang Geng & Fengwang Li & Jie Zeng, 2023. "Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Yaowei Huang & Da Xu & Shuai Deng & Meng Lin, 2024. "A hybrid electro-thermochemical device for methane production from the air," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Xiaoyun Lin & Xiaowei Du & Shican Wu & Shiyu Zhen & Wei Liu & Chunlei Pei & Peng Zhang & Zhi-Jian Zhao & Jinlong Gong, 2024. "Machine learning-assisted dual-atom sites design with interpretable descriptors unifying electrocatalytic reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Jiaqi Feng & Libing Zhang & Shoujie Liu & Liang Xu & Xiaodong Ma & Xingxing Tan & Limin Wu & Qingli Qian & Tianbin Wu & Jianling Zhang & Xiaofu Sun & Buxing Han, 2023. "Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Charles E. Creissen & Marc Fontecave, 2022. "Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    20. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61132-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.