IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61015-6.html
   My bibliography  Save this article

In situ cryo-electron tomography reveals the progressive biogenesis of basal bodies and cilia in mouse ependymal cells

Author

Listed:
  • Shanshan Ma

    (Peking University)

  • Luan Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhixun Li

    (Peking University)

  • Shenjia Luo

    (Peking University)

  • Qi Liu

    (Zhejiang University)

  • Wenjing Du

    (Peking University)

  • Benhua Qiu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Miao Gui

    (Zhejiang University)

  • Xueliang Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qiang Guo

    (Peking University
    Changping Laboratory)

Abstract

Cilia, essential organelles for cell motility and signaling, comprise an axoneme extended from the basal body (BB). The assembly process of BBs and axonemes during ciliogenesis, however, remains largely unknown due to the lack of structural information. Here, we leverage in-situ cryo-electron tomography to capture within mouse ependymal cells the dynamic processes of BB biogenesis and multiciliogenesis at various stages. This approach enables 3D visualization of the complete motile machinery, revealing the continuous microtubule-based scaffold from BBs to axonemes at sub-nanometer resolution with unprecedented structural details. Furthermore, we elucidate along BBs and cilia heterogeneous landscapes of microtubule-binding proteins underlying the establishment of structural periodicity and diverse subregions. Notably, the chronological binding patterns of microtubule-inner proteins (e.g., CEP41) correlate with the progressive assembly of ciliary beating machinery. We also resolve a substructure that borders the BB and the axoneme. Our findings provide key insights into intricate orchestrations during ciliogenesis.

Suggested Citation

  • Shanshan Ma & Luan Li & Zhixun Li & Shenjia Luo & Qi Liu & Wenjing Du & Benhua Qiu & Miao Gui & Xueliang Zhu & Qiang Guo, 2025. "In situ cryo-electron tomography reveals the progressive biogenesis of basal bodies and cilia in mouse ependymal cells," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61015-6
    DOI: 10.1038/s41467-025-61015-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61015-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61015-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Xueming Meng & Cong Xu & Jiawei Li & Benhua Qiu & Jiajun Luo & Qin Hong & Yujie Tong & Chuyu Fang & Yanyan Feng & Rui Ma & Xiangyi Shi & Cheng Lin & Chen Pan & Xueliang Zhu & Xiumin Yan & Yao Cong, 2024. "Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. P. Guichard & V. Hamel & M. Le Guennec & N. Banterle & I. Iacovache & V. Nemčíková & I. Flückiger & K. N. Goldie & H. Stahlberg & D. Lévy & B. Zuber & P. Gönczy, 2017. "Cell-free reconstitution reveals centriole cartwheel assembly mechanisms," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    4. Travis Walton & Miao Gui & Simona Velkova & Mahmoud R. Fassad & Robert A. Hirst & Eric Haarman & Christopher O’Callaghan & Mathieu Bottier & Thomas Burgoyne & Hannah M. Mitchison & Alan Brown, 2023. "Axonemal structures reveal mechanoregulatory and disease mechanisms," Nature, Nature, vol. 618(7965), pages 625-633, June.
    5. Hao Liu & Jianqun Zheng & Lei Zhu & Lele Xie & Yawen Chen & Yirong Zhang & Wei Zhang & Yue Yin & Chao Peng & Jun Zhou & Xueliang Zhu & Xiumin Yan, 2021. "Wdr47, Camsaps, and Katanin cooperate to generate ciliary central microtubules," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Ting-Jui Ben Chang & Jimmy Ching-Cheng Hsu & T. Tony Yang, 2023. "Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueming Meng & Cong Xu & Jiawei Li & Benhua Qiu & Jiajun Luo & Qin Hong & Yujie Tong & Chuyu Fang & Yanyan Feng & Rui Ma & Xiangyi Shi & Cheng Lin & Chen Pan & Xueliang Zhu & Xiumin Yan & Yao Cong, 2024. "Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Alexander Stevens & Saarang Kashyap & Ethan H. Crofut & Shuqi E. Wang & Katherine A. Muratore & Patricia J. Johnson & Z. Hong Zhou, 2025. "Structures of Native Doublet Microtubules from Trichomonas vaginalis Reveal Parasite-Specific Proteins," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    3. Qi Gao & Florian W. Hofer & Sebastian Filbeck & Bram J. A. Vermeulen & Martin Würtz & Annett Neuner & Charlotte Kaplan & Maja Zezlina & Cornelia Sala & Hyesu Shin & Oliver J. Gruss & Elmar Schiebel & , 2025. "Structural mechanisms for centrosomal recruitment and organization of the microtubule nucleator γ-TuRC," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    4. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    7. Surabhi Kokane & Ashutosh Gulati & Pascal F. Meier & Rei Matsuoka & Tanadet Pipatpolkai & Giuseppe Albano & Tin Manh Ho & Lucie Delemotte & Daniel Fuster & David Drew, 2025. "PIP2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    8. Justin Riper & Arleth O. Martinez-Claros & Lie Wang & Hannah E. Schneiderman & Sweta Maheshwari & Monica C. Pillon, 2025. "CryoEM structure of the SLFN14 endoribonuclease reveals insight into RNA binding and cleavage," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    9. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.
    11. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    14. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Ahrum Son & Hyunsoo Kim & Jolene K. Diedrich & Casimir Bamberger & Daniel B. McClatchy & Stuart A. Lipton & John R. Yates, 2024. "Using in vivo intact structure for system-wide quantitative analysis of changes in proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Weizhu Huang & Nan Jin & Jia Guo & Cangsong Shen & Chanjuan Xu & Kun Xi & Léo Bonhomme & Robert B. Quast & Dan-Dan Shen & Jiao Qin & Yi-Ru Liu & Yuxuan Song & Yang Gao & Emmanuel Margeat & Philippe Ro, 2024. "Structural basis of orientated asymmetry in a mGlu heterodimer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61015-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.