IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60713-5.html
   My bibliography  Save this article

Biosignatures of diverse eukaryotic life from a Snowball Earth analogue environment in Antarctica

Author

Listed:
  • Fatima Husain

    (Massachusetts Institute of Technology)

  • Jasmin L. Millar

    (Cardiff University)

  • Anne D. Jungblut

    (Natural History Museum)

  • Ian Hawes

    (University of Waikato)

  • Thomas W. Evans

    (Massachusetts Institute of Technology
    Shell Global Solutions International B.V.)

  • Roger E. Summons

    (Massachusetts Institute of Technology)

Abstract

The ephemeral, supraglacial meltwater ponds of the McMurdo Ice Shelf’s undulating ice serve as analogues for refugia where eukaryotic organisms could have thrived during the Cryogenian period. The seafloor sediment and debris lined ponds support the growth of a diverse array of cyanobacterial mat communities and provide habitats for a variety of protists and meiofauna. Here, we show that these eukaryotic assemblages, assessed by steroid biomarker and 18S rRNA gene analyses, inform long-standing questions regarding the diversity of, and controls on, community composition in these environments. Sixteen photosynthetically active microbial mats from meltwater ponds, a 700-year-old relict microbial mat, and a microbial mat from the Bratina Lagoon were analysed for their sterol compositions. These sterols were subjected to simulated diagenesis via catalytic hydrogenation/hydrogenolysis affording their sterane hydrocarbon counterparts, facilitating comparisons with ancient settings. Pond salinity appeared to be a factor influencing the sterol distributions observed. Analyses of 18S rRNA gene sequences conducted on the modern mats independently confirm that the ponds host diverse eukaryotes, including many types of microalgae, protists, and an array of unclassifiable organisms. Our findings support the hypothesis that supraglacial meltwater ponds like those of the McMurdo ice are strong candidates for refugia that sheltered complex life during Snowball Earth episodes.

Suggested Citation

  • Fatima Husain & Jasmin L. Millar & Anne D. Jungblut & Ian Hawes & Thomas W. Evans & Roger E. Summons, 2025. "Biosignatures of diverse eukaryotic life from a Snowball Earth analogue environment in Antarctica," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60713-5
    DOI: 10.1038/s41467-025-60713-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60713-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60713-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jochen J. Brocks & Amber J. M. Jarrett & Eva Sirantoine & Christian Hallmann & Yosuke Hoshino & Tharika Liyanage, 2017. "The rise of algae in Cryogenian oceans and the emergence of animals," Nature, Nature, vol. 548(7669), pages 578-581, August.
    2. Malory O. Brown & Babatunde O. Olagunju & José-Luis Giner & Paula V. Welander, 2023. "Sterol methyltransferases in uncultured bacteria complicate eukaryotic biomarker interpretations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Gordon D. Love & Emmanuelle Grosjean & Charlotte Stalvies & David A. Fike & John P. Grotzinger & Alexander S. Bradley & Amy E. Kelly & Maya Bhatia & William Meredith & Colin E. Snape & Samuel A. Bowri, 2009. "Fossil steroids record the appearance of Demospongiae during the Cryogenian period," Nature, Nature, vol. 457(7230), pages 718-721, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Brunoir & C. Mulligan & A. Sistiaga & K. M. Vuu & P. M. Shih & S. S. O’Reilly & R. E. Summons & D. A. Gold, 2023. "Common origin of sterol biosynthesis points to a feeding strategy shift in Neoproterozoic animals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Kun Zhang & Susan H. Little & Alexander J. Dickson & Graham A. Shields, 2025. "Ocean deoxygenation after the Sturtian Snowball," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Malory O. Brown & Babatunde O. Olagunju & José-Luis Giner & Paula V. Welander, 2023. "Sterol methyltransferases in uncultured bacteria complicate eukaryotic biomarker interpretations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Huyue Song & Zhihui An & Qin Ye & Eva E. Stüeken & Jing Li & Jun Hu & Thomas J. Algeo & Li Tian & Daoliang Chu & Haijun Song & Shuhai Xiao & Jinnan Tong, 2023. "Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Zhiping Yang & Xiaoya Ma & Qiuping Wang & Xiaolin Tian & Jingyan Sun & Zhenhua Zhang & Shuhai Xiao & Olivier Clerck & Frederik Leliaert & Bojian Zhong, 2023. "Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Jiaquan Zhou & Chao Li & Ziyi Song & Xinlei Zhang, 2025. "Organic Geochemical Characteristics and Hydrocarbon Significance of the Permian System Around the Bogda Mountain, Junggar Basin, Northwest China," Sustainability, MDPI, vol. 17(1), pages 1-21, January.
    7. Kang, Shijie & Zhang, Shijing & Wang, Zhendong & Li, Shengli & Zhao, Fangci & Yang, Jie & Zhou, Lingbo & Deng, Yang & Sun, Guidong & Yu, Hongdong, 2023. "Highly efficient catalytic pyrolysis of oil shale by CaCl2 in subcritical water," Energy, Elsevier, vol. 274(C).
    8. Jikun Liu & Litao Wang & Fei Chen & Wenya Hu & Chenglong Dong & Yinghao Wang & Yehua Han, 2023. "Molecular Characterization of Hydrocarbons in Petroleum by Ultrahigh-Resolution Mass Spectrometry," Energies, MDPI, vol. 16(11), pages 1-16, May.
    9. Lennart Ramme & Tatiana Ilyina & Jochem Marotzke, 2024. "Moderate greenhouse climate and rapid carbonate formation after Marinoan snowball Earth," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Katsuhiko Shimizu & Michika Nishi & Yuto Sakate & Haruka Kawanami & Tomohiro Bito & Jiro Arima & Laia Leria & Manuel Maldonado, 2024. "Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Malcolm S Hill & April L Hill & Jose Lopez & Kevin J Peterson & Shirley Pomponi & Maria C Diaz & Robert W Thacker & Maja Adamska & Nicole Boury-Esnault & Paco Cárdenas & Andia Chaves-Fonnegra & Elizab, 2013. "Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-16, January.
    12. Zhihao Pang & Félix Tombeur & Sue E. Hartley & Constantin M. Zohner & Miroslav Nikolic & Cyrille Violle & Lidong Mo & Thomas W. Crowther & Dong-Xing Guan & Zhongkui Luo & Yong-Guan Zhu & Yuxiao Wang &, 2025. "Convergent evidence for the temperature-dependent emergence of silicification in terrestrial plants," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Zheng Hou & Xiaoya Ma & Xuan Shi & Xi Li & Lingxiao Yang & Shuhai Xiao & Olivier Clerck & Frederik Leliaert & Bojian Zhong, 2022. "Phylotranscriptomic insights into a Mesoproterozoic–Neoproterozoic origin and early radiation of green seaweeds (Ulvophyceae)," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60713-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.