IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60663-y.html
   My bibliography  Save this article

Maximizing meiotic crossover rates reveals the map of Crossover Potential

Author

Listed:
  • Juli Jing

    (Carl-von-Linné-Weg 10)

  • Qichao Lian

    (Carl-von-Linné-Weg 10
    South China Agricultural University)

  • Stephanie Durand

    (Carl-von-Linné-Weg 10)

  • Raphael Mercier

    (Carl-von-Linné-Weg 10)

Abstract

Sexual dysmorphism in the number and distribution of meiotic crossovers is seen across species but is poorly understood. Here, we disrupt multiple anti-crossover pathways in hermaphrodite Arabidopsis and analyze thousands of female and male progeny genomes. The greatest crossover increase is seen in zyp1 recq4 mutants, with a 12-fold rise in females and 4.5-fold in males. Additional manipulation of crossover regulators does not further increase crossovers but shifts the balance between crossover pathways, suggesting competition for a shared, limited precursor pool. While wild-type crossover patterns differ between sexes, mutant crossover landscapes converge on a unique distinct profile, which we term Crossover Potential (COP). COP can be accurately predicted using only sequence and chromatin features. We propose that COP reflects the density of eligible recombination precursors, which is determined by genomic features and is thus identical across sexes, with sexual dimorphism resulting solely from differential regulation of their maturation into crossovers.

Suggested Citation

  • Juli Jing & Qichao Lian & Stephanie Durand & Raphael Mercier, 2025. "Maximizing meiotic crossover rates reveals the map of Crossover Potential," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60663-y
    DOI: 10.1038/s41467-025-60663-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60663-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60663-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stéphanie Durand & Qichao Lian & Juli Jing & Marcel Ernst & Mathilde Grelon & David Zwicker & Raphael Mercier, 2022. "Joint control of meiotic crossover patterning by the synaptonemal complex and HEI10 dosage," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Eugenio Mancera & Richard Bourgon & Alessandro Brozzi & Wolfgang Huber & Lars M. Steinmetz, 2008. "High-resolution mapping of meiotic crossovers and non-crossovers in yeast," Nature, Nature, vol. 454(7203), pages 479-485, July.
    3. Qichao Lian & Victor Solier & Birgit Walkemeier & Stéphanie Durand & Bruno Huettel & Korbinian Schneeberger & Raphael Mercier, 2022. "The megabase-scale crossover landscape is largely independent of sequence divergence," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. repec:plo:pgen00:1005369 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Dluzewska & Wojciech Dziegielewski & Maja Szymanska-Lejman & Monika Gazecka & Ian R. Henderson & James D. Higgins & Piotr A. Ziolkowski, 2023. "MSH2 stimulates interfering and inhibits non-interfering crossovers in response to genetic polymorphism," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Maja Szymanska-Lejman & Wojciech Dziegielewski & Julia Dluzewska & Nadia Kbiri & Anna Bieluszewska & R. Scott Poethig & Piotr A. Ziolkowski, 2023. "The effect of DNA polymorphisms and natural variation on crossover hotspot activity in Arabidopsis hybrids," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Marcel Ernst & Raphael Mercier & David Zwicker, 2024. "Interference length reveals regularity of crossover placement across species," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Simone Mozzachiodi & Lorenzo Tattini & Agnes Llored & Agurtzane Irizar & Neža Škofljanc & Melania D’Angiolo & Matteo De Chiara & Benjamin P. Barré & Jia-Xing Yue & Angela Lutazi & Sophie Loeillet & Ra, 2021. "Aborting meiosis allows recombination in sterile diploid yeast hybrids," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Taikui Zhang & Weichen Huang & Lin Zhang & De-Zhu Li & Ji Qi & Hong Ma, 2024. "Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    6. Stuart D. Desjardins & James Simmonds & Inna Guterman & Kostya Kanyuka & Amanda J. Burridge & Andrew J. Tock & Eugenio Sanchez-Moran & F. Chris H. Franklin & Ian R. Henderson & Keith J. Edwards & Cris, 2022. "FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Stéphanie Durand & Qichao Lian & Juli Jing & Marcel Ernst & Mathilde Grelon & David Zwicker & Raphael Mercier, 2022. "Joint control of meiotic crossover patterning by the synaptonemal complex and HEI10 dosage," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. repec:plo:pgen00:1004042 is not listed on IDEAS
    9. Qichao Lian & Victor Solier & Birgit Walkemeier & Stéphanie Durand & Bruno Huettel & Korbinian Schneeberger & Raphael Mercier, 2022. "The megabase-scale crossover landscape is largely independent of sequence divergence," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60663-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.