Author
Listed:
- Huaxu Yu
(University of California Davis)
- Jun Ding
(Chinese Academy of Sciences)
- Tong Shen
(University of California Davis)
- Min Liu
(University of California Davis)
- Yuanyue Li
(University of California Davis)
- Oliver Fiehn
(University of California Davis)
Abstract
Nontargeted peak detection in LC-MS-based metabolomics must become robust and benchmarked. We present MassCube, a Python-based open-source framework for MS data processing that we systematically benchmark against other algorithms and different types of input data. From raw data, peaks are detected by constructing mass traces through signal clustering and Gaussian-filter assisted edge detection. Peaks are then grouped for adduct and in-source fragment detection, and compounds are annotated by both identity- and fuzzy searches. Final data tables undergo quality controls and can be used for metabolome-informed phenotype prediction. Peak detection in MassCube achieves 100% signal coverage with comprehensive reporting of chromatographic metadata for quality assurance. MassCube outperforms MS-DIAL, MZmine3 or XCMS for speed, isomer detection, and accuracy. It supports diverse numerical routines for MS data analysis while maintaining efficiency, capable for handling 105 GB of Astral MS data on a laptop within 64 min, while other programs took 8–24 times longer. MassCube automatically detected age, sex and regional differences when applied to the Metabolome Atlas of the Aging Mouse Brain data despite batch effects. MassCube is available at https://github.com/huaxuyu/masscube for direct use or implementation into larger applications in omics or biomedical research.
Suggested Citation
Huaxu Yu & Jun Ding & Tong Shen & Min Liu & Yuanyue Li & Oliver Fiehn, 2025.
"MassCube improves accuracy for metabolomics data processing from raw files to phenotype classifiers,"
Nature Communications, Nature, vol. 16(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60640-5
DOI: 10.1038/s41467-025-60640-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60640-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.