IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60430-z.html
   My bibliography  Save this article

H3.3 deposition counteracts the replication-dependent enrichment of H3.1 at chromocenters in embryonic stem cells

Author

Listed:
  • S. Arfè

    (Institut Curie, PSL University, Sorbonne Université, CNRS
    Cedars-Sinai Medical Center)

  • T. Karagyozova

    (Institut Curie, PSL University, Sorbonne Université, CNRS
    University of Edinburgh)

  • A. Forest

    (Institut Curie, PSL University, Sorbonne Université, CNRS)

  • D. Bingham

    (Institut Curie, PSL University, Sorbonne Université, CNRS)

  • H. Hmidan

    (Institut Curie, PSL University, Sorbonne Université, CNRS
    Al-Quds University)

  • D. Mazaud

    (Institut Curie, PSL University, Sorbonne Université, CNRS)

  • M. Garnier

    (Institut Curie, PSL University, Sorbonne Université, CNRS)

  • P. Le Baccon

    (Institut Curie, PSL University, Sorbonne Université, CNRS)

  • E. Meshorer

    (The Hebrew University of Jerusalem)

  • J.-P. Quivy

    (Institut Curie, PSL University, Sorbonne Université, CNRS)

  • G. Almouzni

    (Institut Curie, PSL University, Sorbonne Université, CNRS)

Abstract

Chromocenters in mouse cells are membrane-less nuclear compartments representing typical heterochromatin stably maintained during cell cycle. We explore how histone H3 variants, replicative H3.1/2 or replacement H3.3, mark these domains during the cell cycle in mouse embryonic stem cells, neuronal precursor cells as well as immortalized 3T3 cells. We find a strong and distinct H3.1 enrichment at chromocenters, with variation in mouse embryonic stem cells. Mechanistically, this H3.1 selective enrichment depends on the DNA Synthesis Coupled deposition pathway operating in S phase challenged when we target H3.3 deposition through the DNA Synthesis Independent deposition pathway mediated by HIRA. Altering the H3.1/H3.3 dynamics at chromocenters in mouse embryonic stem cells affects nuclear morphology and cell division. Here, we reveal opposing mechanisms for H3.1 and H3.3 deposition with different enforcement according to cell cycle and potency which determine their ratio at chromocenters and are critical for genome stability and cell survival.

Suggested Citation

  • S. Arfè & T. Karagyozova & A. Forest & D. Bingham & H. Hmidan & D. Mazaud & M. Garnier & P. Le Baccon & E. Meshorer & J.-P. Quivy & G. Almouzni, 2025. "H3.3 deposition counteracts the replication-dependent enrichment of H3.1 at chromocenters in embryonic stem cells," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60430-z
    DOI: 10.1038/s41467-025-60430-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60430-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60430-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon J. Elsässer & Kyung-Min Noh & Nichole Diaz & C. David Allis & Laura A. Banaszynski, 2015. "Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells," Nature, Nature, vol. 522(7555), pages 240-244, June.
    2. Clara Lopes Novo & Emily V. Wong & Colin Hockings & Chetan Poudel & Eleanor Sheekey & Meike Wiese & Hanneke Okkenhaug & Simon J. Boulton & Srinjan Basu & Simon Walker & Gabriele S. Kaminski Schierle &, 2022. "Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. David Sitbon & Ekaterina Boyarchuk & Florent Dingli & Damarys Loew & Geneviève Almouzni, 2020. "Histone variant H3.3 residue S31 is essential for Xenopus gastrulation regardless of the deposition pathway," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    4. Dominik Hoelper & Hongda Huang & Aayushi Y. Jain & Dinshaw J. Patel & Peter W. Lewis, 2017. "Structural and mechanistic insights into ATRX-dependent and -independent functions of the histone chaperone DAXX," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    5. Dominique Ray-Gallet & M. Daniel Ricketts & Yukari Sato & Kushol Gupta & Ekaterina Boyarchuk & Toshiya Senda & Ronen Marmorstein & Geneviève Almouzni, 2018. "Functional activity of the H3.3 histone chaperone complex HIRA requires trimerization of the HIRA subunit," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    6. Christèle Maison & Delphine Bailly & Jean-Pierre Quivy & Geneviève Almouzni, 2016. "The methyltransferase Suv39h1 links the SUMO pathway to HP1α marking at pericentric heterochromatin," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iqbal Mahmud & Guimei Tian & Jia Wang & Tarun E. Hutchinson & Brandon J. Kim & Nikee Awasthee & Seth Hale & Chengcheng Meng & Allison Moore & Liming Zhao & Jessica E. Lewis & Aaron Waddell & Shangtao , 2023. "DAXX drives de novo lipogenesis and contributes to tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Sophia Groh & Anna Viktoria Milton & Lisa Katherina Marinelli & Cara V. Sickinger & Angela Russo & Heike Bollig & Gustavo Pereira de Almeida & Andreas Schmidt & Ignasi Forné & Axel Imhof & Gunnar Scho, 2021. "Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Kentaro Mochizuki & Jafar Sharif & Kenjiro Shirane & Kousuke Uranishi & Aaron B. Bogutz & Sanne M. Janssen & Ayumu Suzuki & Akihiko Okuda & Haruhiko Koseki & Matthew C. Lorincz, 2021. "Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Halima H. Schede & Pradeep Natarajan & Arup K. Chakraborty & Krishna Shrinivas, 2023. "A model for organization and regulation of nuclear condensates by gene activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Ryan E. Hulett & Julian O. Kimura & D. Marcela Bolaños & Yi-Jyun Luo & Carlos Rivera-López & Lorenzo Ricci & Mansi Srivastava, 2023. "Acoel single-cell atlas reveals expression dynamics and heterogeneity of adult pluripotent stem cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Marko Dunjić & Felix Jonas & Gilad Yaakov & Roye More & Yoav Mayshar & Yoach Rais & Ayelet-Hashahar Orenbuch & Saifeng Cheng & Naama Barkai & Yonatan Stelzer, 2023. "Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Nitika Gaurav & Ryan O’Hara & Usman Hyder & Weihua Qin & Cheenou Her & Hector Romero & Amarjeet Kumar & Maria J. Marcaida & Rohit K. Singh & Ruud Hovius & Karthik Selvam & Jiuyang Liu & Sara Martire &, 2025. "The HP1 box of KAP1 organizes HP1α for silencing of endogenous retroviral elements in embryonic stem cells," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    8. Zhenhui Zhong & Yafei Wang & Ming Wang & Fan Yang & Quentin Angelo Thomas & Yan Xue & Yaxin Zhang & Wanlu Liu & Yasaman Jami-Alahmadi & Linhao Xu & Suhua Feng & Sebastian Marquardt & James A. Wohlschl, 2022. "Histone chaperone ASF1 mediates H3.3-H4 deposition in Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Mande Xue & Lijun Ma & Xiaoyi Li & Huairen Zhang & Fengyue Zhao & Qian Liu & Danhua Jiang, 2025. "Single amino acid mutations in histone H3.3 illuminate the functional significance of H3K4 methylation in plants," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    10. Xiaowei Xu & Shoufu Duan & Xu Hua & Zhiming Li & Richard He & Zhiguo Zhang, 2022. "Stable inheritance of H3.3-containing nucleosomes during mitotic cell divisions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Sarah Tessier & Omar Ferhi & Marie-Claude Geoffroy & Román González-Prieto & Antoine Canat & Samuel Quentin & Marika Pla & Michiko Niwa-Kawakita & Pierre Bercier & Domitille Rérolle & Marilyn Tirard &, 2022. "Exploration of nuclear body-enhanced sumoylation reveals that PML represses 2-cell features of embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Khalil Joron & Juliane Oliveira Viegas & Liam Haas-Neill & Sariel Bier & Paz Drori & Shani Dvir & Patrick Siang Lin Lim & Sarah Rauscher & Eran Meshorer & Eitan Lerner, 2023. "Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Ting Zhao & Jingyun Lu & Huairen Zhang & Mande Xue & Jie Pan & Lijun Ma & Frédéric Berger & Danhua Jiang, 2022. "Histone H3.3 deposition in seed is essential for the post-embryonic developmental competence in Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60430-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.