IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60425-w.html
   My bibliography  Save this article

Sequential structure probing of cotranscriptional RNA folding intermediates

Author

Listed:
  • Courtney E. Szyjka

    (The University at Buffalo)

  • Skyler L. Kelly

    (The University at Buffalo)

  • Eric J. Strobel

    (The University at Buffalo)

Abstract

Cotranscriptional RNA folding pathways typically involve the sequential formation of folding intermediates. Existing methods for cotranscriptional RNA structure probing map the structure of nascent RNA in the context of a terminally arrested transcription elongation complex. Consequently, the rearrangement of RNA structures as nucleotides are added to the transcript can be inferred but is not assessed directly. Here, we describe linked-multipoint Transcription Elongation Complex RNA structure probing (TECprobe-LM), which assesses the cotranscriptional rearrangement of RNA structures by sequentially positioning E. coli RNAP at two or more points within a DNA template so that nascent RNA can be chemically probed. We validate TECprobe-LM by measuring known folding events that occur within the E. coli signal recognition particle RNA, Clostridium beijerinckii pfl ZTP riboswitch, and Bacillus cereus crcB fluoride riboswitch folding pathways. Our findings establish TECprobe-LM as a strategy for observing cotranscriptional RNA folding events directly using chemical probing.

Suggested Citation

  • Courtney E. Szyjka & Skyler L. Kelly & Eric J. Strobel, 2025. "Sequential structure probing of cotranscriptional RNA folding intermediates," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60425-w
    DOI: 10.1038/s41467-025-60425-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60425-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60425-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60425-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.