IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18283-1.html
   My bibliography  Save this article

Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape

Author

Listed:
  • Boyang Hua

    (Johns Hopkins School of Medicine)

  • Christopher P. Jones

    (Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health)

  • Jaba Mitra

    (University of Illinois at Urbana-Champaign)

  • Peter J. Murray

    (Johns Hopkins University)

  • Rebecca Rosenthal

    (Johns Hopkins University)

  • Adrian R. Ferré-D’Amaré

    (Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health)

  • Taekjip Ha

    (Johns Hopkins School of Medicine
    Johns Hopkins University
    Johns Hopkins University
    Howard Hughes Medical Institute)

Abstract

RNAs begin to fold and function during transcription. Riboswitches undergo cotranscriptional switching in the context of transcription elongation, RNA folding, and ligand binding. To investigate how these processes jointly modulate the function of the folate stress-sensing Fusobacterium ulcerans ZTP riboswitch, we apply a single-molecule vectorial folding (VF) assay in which an engineered superhelicase Rep-X sequentially releases fluorescently labeled riboswitch RNA from a heteroduplex in a 5′-to-3′ direction, at ~60 nt s−1 [comparable to the speed of bacterial RNA polymerase (RNAP)]. We demonstrate that the ZTP riboswitch is kinetically controlled and that its activation is favored by slower unwinding, strategic pausing between but not before key folding elements, or a weakened transcription terminator. Real-time single-molecule monitoring captures folding riboswitches in multiple states, including an intermediate responsible for delayed terminator formation. These results show how individual nascent RNAs occupy distinct channels within the folding landscape that controls the fate of the riboswitch.

Suggested Citation

  • Boyang Hua & Christopher P. Jones & Jaba Mitra & Peter J. Murray & Rebecca Rosenthal & Adrian R. Ferré-D’Amaré & Taekjip Ha, 2020. "Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18283-1
    DOI: 10.1038/s41467-020-18283-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18283-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18283-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Griffin M. Schroeder & Chapin E. Cavender & Maya E. Blau & Jermaine L. Jenkins & David H. Mathews & Joseph E. Wedekind, 2022. "A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Courtney E. Szyjka & Eric J. Strobel, 2023. "Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Yanyan Xue & Jun Li & Dian Chen & Xizhu Zhao & Liang Hong & Yu Liu, 2023. "Observation of structural switch in nascent SAM-VI riboswitch during transcription at single-nucleotide and single-molecule resolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18283-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.