IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60170-0.html
   My bibliography  Save this article

The geometric-electronic coupled design of diatomic catalyst towards oxygen reduction reaction

Author

Listed:
  • Yan Liu

    (Anhui Normal University)

  • Yan Yang

    (Anhui Normal University)

  • Xuanni Lin

    (Beijing University of Chemical Technology)

  • Yutao Lin

    (Anhui Normal University)

  • Zhiwen Zhuo

    (University of Science and Technology of China)

  • Dong Liu

    (Beijing University of Chemical Technology)

  • Junjie Mao

    (Anhui Normal University)

  • Jun Jiang

    (University of Science and Technology of China)

Abstract

Diatomic catalysts are promising candidates for heterogeneous catalysis, whereas the rational design meets the challenges of numerous optional elements and the correlated alternation of parameters that affect the performance. Herein, we demonstrate a geometric-electronic coupled design of diatomic catalysts towards oxygen reduction reaction through machine learning derived catalytic “hot spot map”. The hot spot map is constructed with two descriptors as axes, including the geometric distance of the diatom and electronic magnetic moment. The narrow hot region in the map indicates the necessary collaborative regulation of the geometric and electronic effects for catalyst design. As a predicted ideal catalyst for oxygen reduction reaction, the N-bridged Co, Mn diatomic catalyst (Co-N-Mn/NC) is experimentally synthesized with a half-wave potential of 0.90 V, together with the embodied zinc air battery displaying high peak power density of 271 mW cm−2 and specific capacity of 806 mAh g − 1Zn. This work presents an advanced prototype for the comprehensive design of catalysts.

Suggested Citation

  • Yan Liu & Yan Yang & Xuanni Lin & Yutao Lin & Zhiwen Zhuo & Dong Liu & Junjie Mao & Jun Jiang, 2025. "The geometric-electronic coupled design of diatomic catalyst towards oxygen reduction reaction," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60170-0
    DOI: 10.1038/s41467-025-60170-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60170-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60170-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lichen Bai & Chia-Shuo Hsu & Duncan T. L. Alexander & Hao Ming Chen & Xile Hu, 2021. "Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis," Nature Energy, Nature, vol. 6(11), pages 1054-1066, November.
    2. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Cong Fang & Jian Zhou & Lili Zhang & Wenchao Wan & Yuxiao Ding & Xiaoyan Sun, 2023. "Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Lu Tao & Kai Wang & Fan Lv & Hongtian Mi & Fangxu Lin & Heng Luo & Hongyu Guo & Qinghua Zhang & Lin Gu & Mingchuan Luo & Shaojun Guo, 2023. "Precise synthetic control of exclusive ligand effect boosts oxygen reduction catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Yan Liu & Yan Yang & Xuanni Lin & Yutao Lin & Zhiwen Zhuo & Dong Liu & Junjie Mao & Jun Jiang, 2025. "The geometric-electronic coupled design of diatomic catalyst towards oxygen reduction reaction," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Jinfa Chang & Guanzhi Wang & Maoyu Wang & Qi Wang & Boyang Li & Hua Zhou & Yuanmin Zhu & Wei Zhang & Mahmoud Omer & Nina Orlovskaya & Qing Ma & Meng Gu & Zhenxing Feng & Guofeng Wang & Yang Yang, 2021. "Improving Pd–N–C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment," Nature Energy, Nature, vol. 6(12), pages 1144-1153, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Liu & Yan Yang & Xuanni Lin & Yutao Lin & Zhiwen Zhuo & Dong Liu & Junjie Mao & Jun Jiang, 2025. "The geometric-electronic coupled design of diatomic catalyst towards oxygen reduction reaction," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Yang & Wanqing Song & Kang Liao & Xiaoyang Wang & Xin Wang & Jinfeng Zhang & Haozhi Wang & Yanan Chen & Ning Yan & Xiaopeng Han & Jia Ding & Wenbin Hu, 2024. "Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Xiaoyun Lin & Xiaowei Du & Shican Wu & Shiyu Zhen & Wei Liu & Chunlei Pei & Peng Zhang & Zhi-Jian Zhao & Jinlong Gong, 2024. "Machine learning-assisted dual-atom sites design with interpretable descriptors unifying electrocatalytic reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Qianbao Wu & Junwu Liang & Mengjun Xiao & Chang Long & Lei Li & Zhenhua Zeng & Andraž Mavrič & Xia Zheng & Jing Zhu & Hai-Wei Liang & Hongfei Liu & Matjaz Valant & Wei Wang & Zhengxing Lv & Jiong Li &, 2023. "Non-covalent ligand-oxide interaction promotes oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Yu Qiu & Mingzi Sun & Jiandong Wu & Chunxiao Chai & Shengwei Wang & Hong Huang & Xiao Zhao & Dongxu Jiao & Shan Xu & Dewen Wang & Xin Ge & Wei Zhang & Weitao Zheng & Yujiang Song & Jinchang Fan & Bolo, 2025. "Boosting oxygen reduction performances in Pd-based metallenes by co-confining interstitial H and p-block single atoms," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    6. Jiali Wang & Chia-Shuo Hsu & Tai-Sing Wu & Ting-Shan Chan & Nian-Tzu Suen & Jyh-Fu Lee & Hao Ming Chen, 2023. "In situ X-ray spectroscopies beyond conventional X-ray absorption spectroscopy on deciphering dynamic configuration of electrocatalysts," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    7. Xintong Gao & Xiaowan Bai & Pengtang Wang & Yan Jiao & Kenneth Davey & Yao Zheng & Shi-Zhang Qiao, 2023. "Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Wenjun Fan & Zhiyao Duan & Wei Liu & Rashid Mehmood & Jiating Qu & Yucheng Cao & Xiangyang Guo & Jun Zhong & Fuxiang Zhang, 2023. "Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Yixin Hao & Sung-Fu Hung & Luqi Wang & Liming Deng & Wen-Jing Zeng & Chenchen Zhang & Zih-Yi Lin & Chun-Han Kuo & Ye Wang & Ying Zhang & Han-Yi Chen & Feng Hu & Linlin Li & Shengjie Peng, 2024. "Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Zheye Zhang & Hongyan Zhao & Shibo Xi & Xiaoxu Zhao & Xiao Chi & Hong Yang & Zhongxin Chen & Xiaojiang Yu & Yang-Gang Wang & Bin Liu & Peng Chen, 2025. "Breaking linear scaling relationships in oxygen evolution via dynamic structural regulation of active sites," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    12. Bailin Tian & Fangyuan Wang & Pan Ran & Luhan Dai & Yang Lv & Yuxia Sun & Zhangyan Mu & Yamei Sun & Lingyu Tang & William A. Goddard & Mengning Ding, 2024. "Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60170-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.