IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60168-8.html
   My bibliography  Save this article

Fluorine-doped micropore-covered mesoporous carbon nanofibers for long-lasting anode-free sodium metal batteries

Author

Listed:
  • Haolin Zhu

    (Huazhong University of Science and Technology)

  • Linfeng Peng

    (Huazhong University of Science and Technology)

  • Junxiu Wu

    (Zhejiang University)

  • Siwu Li

    (Huazhong University of Science and Technology)

  • Qiang Wu

    (Huazhong University of Science and Technology)

  • Shijie Cheng

    (Huazhong University of Science and Technology)

  • Jia Xie

    (Huazhong University of Science and Technology)

  • Jun Lu

    (Zhejiang University)

Abstract

Anode-free sodium metal batteries have gained significant attention due to the abundance of their material resources and high energy densities. However, their practical application is hindered by continuous sodium consumption and dendrite growth characteristics. In this study, we present fluorine-doped micropore-covered mesoporous carbon fibers to enhance the cycling performance of anode-free sodium metal batteries. The introduction of electronegative fluorine generates more Lewis acid sites and sodiophilic Zn-Nx sites, thereby suppressing electrolyte decomposition and promoting uniform sodium metal deposition. Structural modifications are implemented to create a micropore-covered mesoporous framework, resulting in the formation of a thin, uniform solid electrolyte interphase that facilitates Na metal confinement and self-smoothing. The carbon fibers as the current collector exhibit a low sodium nucleation overpotential and rapid sodium thermal infusion, demonstrating highly reversible sodium plating/stripping for more than 5000 cycles with an average Coulombic efficiency of 99.93% at a high current density of 5 mA cm−2. Furthermore, anode-free pouch cell with high-loading positive electrode achieves stable cycling characteristics for 200 cycles with 90% capacity retention. These findings demonstrate the efficacy of tailoring the compositions and microstructures of porous carbon current collectors for enhancing the cycling life and stability characteristics of sodium metal batteries.

Suggested Citation

  • Haolin Zhu & Linfeng Peng & Junxiu Wu & Siwu Li & Qiang Wu & Shijie Cheng & Jia Xie & Jun Lu, 2025. "Fluorine-doped micropore-covered mesoporous carbon nanofibers for long-lasting anode-free sodium metal batteries," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60168-8
    DOI: 10.1038/s41467-025-60168-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60168-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60168-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    2. Yuqi Li & Quan Zhou & Suting Weng & Feixiang Ding & Xingguo Qi & Jiaze Lu & Yu Li & Xiao Zhang & Xiaohui Rong & Yaxiang Lu & Xuefeng Wang & Ruijuan Xiao & Hong Li & Xuejie Huang & Liquan Chen & Yong-S, 2022. "Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries," Nature Energy, Nature, vol. 7(6), pages 511-519, June.
    3. Jinfa Chang & Guanzhi Wang & Maoyu Wang & Qi Wang & Boyang Li & Hua Zhou & Yuanmin Zhu & Wei Zhang & Mahmoud Omer & Nina Orlovskaya & Qing Ma & Meng Gu & Zhenxing Feng & Guofeng Wang & Yang Yang, 2021. "Improving Pd–N–C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment," Nature Energy, Nature, vol. 6(12), pages 1144-1153, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    2. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    3. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    4. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    5. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    6. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    7. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    8. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    9. Mingda Liu & Zhichao Zhang & Chenyu Li & Sen Jin & Kunlei Zhu & Shoushan Fan & Jia Li & Kai Liu, 2025. "High-entropy alloyed single-atom Pt for methanol oxidation electrocatalysis," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    10. Yang, Jingluan & Chen, Wei, 2023. "Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security," Resources Policy, Elsevier, vol. 86(PB).
    11. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    14. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    15. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    16. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    17. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    18. Chen, Xinhui & Wei, Jianfeng & Sheng, Songwei & Wang, Wensheng & Wang, Kunlin & Zhang, Yaqun & Wang, Zhenpeng, 2023. "Design and experimental study of a novel type water-filled submerged flexible bag wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
    19. Cai, Hua & Hu, Xiaojun & Xu, Ming, 2013. "Impact of emerging clean vehicle system on water stress," Applied Energy, Elsevier, vol. 111(C), pages 644-651.
    20. Griffin, Paul A. & Jaffe, Amy Myers & Lont, David H. & Dominguez-Faus, Rosa, 2015. "Science and the stock market: Investors' recognition of unburnable carbon," Energy Economics, Elsevier, vol. 52(PA), pages 1-12.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60168-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.