Author
Listed:
- Eunmi Lee
(Princeton University
Ludwig Institute for Cancer Research Princeton Branch)
- Jason J. Hong
(Princeton University)
- Gabriel Samcam Vargas
(Princeton University)
- Natalie Sauerwald
(Flatiron Institute
Princeton University)
- Yong Wei
(Princeton University
Ludwig Institute for Cancer Research Princeton Branch)
- Xiang Hang
(Princeton University
Ludwig Institute for Cancer Research Princeton Branch)
- Chandra L. Theesfeld
(Princeton University)
- Jean Arly A. Volmar
(Princeton University)
- Jennifer M. Miller
(Princeton University)
- Wei Wang
(Princeton University)
- Sha Wang
(Princeton University)
- Gary Laevsky
(Princeton University)
- Christina J. DeCoste
(Princeton University)
- Yibin Kang
(Princeton University
Ludwig Institute for Cancer Research Princeton Branch
Rutgers Cancer Institute of New Jersey)
Abstract
Tumor-initiating cells (TICs) share features and regulatory pathways with normal stem cells, yet how the stem cell niche contributes to tumorigenesis remains unclear. Here, we identify CXCR4+ macrophages as a niche population enriched in normal mammary ducts, where they promote the regenerative activity of basal cells in response to luminal cell-derived CXCL12. CXCL12 triggers AKT-mediated stabilization of β-catenin, which induces Wnt ligands and pro-migratory genes, enabling intraductal macrophage infiltration and supporting regenerative activity of basal cells. Notably, these same CXCR4+ niche macrophages regulate the tumor-initiating activity of various breast cancer subtypes by enhancing TIC survival and tumor-forming capacity, while promoting early immune evasion through regulatory T cell induction. Furthermore, a CXCR4+ niche macrophage gene signature correlates with poor prognosis in human breast cancer. These findings highlight the pivotal role of the CXCL12-CXCR4 axis in orchestrating interactions between niche macrophages, mammary epithelial cells, and immune cells, thereby establishing a supportive niche for both normal tissue regeneration and mammary tumor initiation.
Suggested Citation
Eunmi Lee & Jason J. Hong & Gabriel Samcam Vargas & Natalie Sauerwald & Yong Wei & Xiang Hang & Chandra L. Theesfeld & Jean Arly A. Volmar & Jennifer M. Miller & Wei Wang & Sha Wang & Gary Laevsky & C, 2025.
"CXCR4+ mammary gland macrophageal niche promotes tumor initiating cell activity and immune suppression during tumorigenesis,"
Nature Communications, Nature, vol. 16(1), pages 1-24, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59972-z
DOI: 10.1038/s41467-025-59972-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59972-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.