Author
Listed:
- Zijie Zhu
(South China University of Technology)
- Yiwen Liu
(South China University of Technology)
- Yuanbin Qin
(Xi’an Jiaotong University)
- Fangchao Gu
(South China University of Technology)
- Lei Zhuang
(South China University of Technology)
- Hulei Yu
(South China University of Technology)
- Yanhui Chu
(South China University of Technology)
Abstract
Developing bioinspired all-ceramics with plastic phases is considered one of the most effective ways to simultaneously achieve enhanced strength and toughness in ceramic materials for high-temperature applications. Here we explore tough and strong bioinspired high-entropy all-ceramics with a contiguous network structure that are able to serve up to 1300 °C. Specifically, we develop the high-entropy all-ceramics, featuring a unique contiguous network distribution of the Cr7C3 plastic phase within the predominant high-entropy carbide (HEC) hard phase, through a high-entropy composition-engineering strategy. The resulting materials exhibit impressive fracture initiation toughness of 12.5 ± 1.5 MPa·m1/2 and flexural strength of 613 ± 52 MPa at room temperature, as well as ~97% strength retention up to 1300 °C due to their good high-temperature stability, surpassing the performance of most other reported bioinspired ceramics. Further experimental and theoretical investigations demonstrate that the Cr7C3 phase can undergo plastic deformation by forming nanoscale shear bands with significant crystal defects, resulting in multiple toughening mechanisms involving crack-bridging of unfractured Cr7C3 ligaments and crack deflection in the HEC/Cr7C3 all-ceramics. This work successfully develops tough and strong bioinspired high-entropy all-ceramics capable of serving up to 1300 °C, offering an innovative strategy that facilitates further design of bioinspired ceramics applicable at higher temperatures.
Suggested Citation
Zijie Zhu & Yiwen Liu & Yuanbin Qin & Fangchao Gu & Lei Zhuang & Hulei Yu & Yanhui Chu, 2025.
"Tough and strong bioinspired high-entropy all-ceramics with a contiguous network structure,"
Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59914-9
DOI: 10.1038/s41467-025-59914-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59914-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.