Author
Listed:
- Yi Zhang
(Peking University)
- Mingying Shi
(Peking University)
- Mingxuan Li
(Peking University)
- Shaojie Qin
(Peking University)
- Daiyu Miao
(Peking University)
- Yu Bai
(Peking University)
Abstract
Single-cell metabolomics reveals cell heterogeneity and elucidates intracellular molecular mechanisms. However, general concentration measurement of metabolites can only provide a static delineation of metabolomics, lacking the metabolic activity information of biological pathways. Herein, we develop a universal system for dynamic metabolomics by stable isotope tracing at the single-cell level. This system comprises a high-throughput single-cell data acquisition platform and an untargeted isotope tracing data processing platform, providing an integrated workflow for dynamic metabolomics of single cells. This system enables the global activity profiling and flow analysis of interlaced metabolic networks at the single-cell level and reveals heterogeneous metabolic activities among single cells. The significance of activity profiling is underscored by a 2-deoxyglucose inhibition model, demonstrating delicate metabolic alteration within single cells which cannot reflected by concentration analysis. Significantly, the system combined with a neural network model enables the metabolomic profiling of direct co-cultured tumor cells and macrophages. This reveals intricate cell-cell interaction mechanisms within the tumor microenvironment and firstly identifies versatile polarization subtypes of tumor-associated macrophages based on their metabolic signatures, which is in line with the renewed diversity atlas of macrophages from single-cell RNA-sequencing. The developed system facilitates a comprehensive understanding single-cell metabolomics from both static and dynamic perspectives.
Suggested Citation
Yi Zhang & Mingying Shi & Mingxuan Li & Shaojie Qin & Daiyu Miao & Yu Bai, 2025.
"Dynamic single-cell metabolomics reveals cell-cell interaction between tumor cells and macrophages,"
Nature Communications, Nature, vol. 16(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59878-w
DOI: 10.1038/s41467-025-59878-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59878-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.