IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59825-9.html
   My bibliography  Save this article

Supramodal and cross-modal representations of working memory in higher-order cortex

Author

Listed:
  • Doyoung Park

    (Seoul National University (SNU)
    Seoul National University (SNU))

  • Seong-Hwan Hwang

    (Seoul National University (SNU)
    Seoul National University (SNU))

  • Keonwoo Lee

    (Seoul National University (SNU))

  • Yeeun Ryoo

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Hyoung F. Kim

    (Seoul National University (SNU)
    Seoul National University (SNU))

  • Sue-Hyun Lee

    (Seoul National University (SNU)
    Seoul National University (SNU)
    Seoul National University College of Medicine)

Abstract

Working memory is essential for guiding our behaviors in daily life, where sensory information continuously flows from the external environment. While numerous studies have shown the involvement of sensory areas in maintaining working memory in a feature-specific manner, the challenge of utilizing retained sensory representations without interference from incoming stimuli of the same feature remains unresolved. To overcome this, essential information needs to be maintained dually in a form distinct from sensory representations. Here, using working memory tasks to retain braille patterns presented tactually or visually during fMRI scanning, we discovered two distinct forms of high-level working memory representations in the parietal and prefrontal cortex, together with modality-dependent sensory representations. First, we found supramodal representations in the superior parietal cortex that encoded braille identity in a consistent form, regardless of the involved sensory modality. Second, we observed that the prefrontal cortex and inferior parietal cortex specifically encoded cross-modal representations, which emerged during tasks requiring the association of information across sensory modalities, indicating a different high-level representation for integrating a broad range of sensory information. These findings suggest a framework for working memory maintenance that incorporates two distinct types of high-level representations–supramodal and cross-modal–operating alongside sensory representations.

Suggested Citation

  • Doyoung Park & Seong-Hwan Hwang & Keonwoo Lee & Yeeun Ryoo & Hyoung F. Kim & Sue-Hyun Lee, 2025. "Supramodal and cross-modal representations of working memory in higher-order cortex," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59825-9
    DOI: 10.1038/s41467-025-59825-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59825-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59825-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Janina Klautke & Celia Foster & W. Pieter Medendorp & Tobias Heed, 2023. "Dynamic spatial coding in parietal cortex mediates tactile-motor transformation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Stephenie A. Harrison & Frank Tong, 2009. "Decoding reveals the contents of visual working memory in early visual areas," Nature, Nature, vol. 458(7238), pages 632-635, April.
    3. Seong-Hwan Hwang & Doyoung Park & Ji-Woo Lee & Sue-Hyun Lee & Hyoung F. Kim, 2024. "Convergent representation of values from tactile and visual inputs for efficient goal-directed behavior in the primate putamen," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:plo:pone00:0020801 is not listed on IDEAS
    2. Duncan Edward Astle & Anna Christina Nobre & Gaia Scerif, 2009. "Applying an Attentional Set to Perceived and Remembered Features," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-12, October.
    3. Mrugank Dake & Clayton E. Curtis, 2025. "Perturbing human V1 degrades the fidelity of visual working memory," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    4. Kay H Brodersen & Thomas M Schofield & Alexander P Leff & Cheng Soon Ong & Ekaterina I Lomakina & Joachim M Buhmann & Klaas E Stephan, 2011. "Generative Embedding for Model-Based Classification of fMRI Data," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-19, June.
    5. Juan Linde-Domingo & Bernhard Spitzer, 2024. "Geometry of visuospatial working memory information in miniature gaze patterns," Nature Human Behaviour, Nature, vol. 8(2), pages 336-348, February.
    6. repec:plo:pbio00:3000239 is not listed on IDEAS
    7. repec:plo:pone00:0214937 is not listed on IDEAS
    8. Giulio Contemori & Carolina Maria Oletto & Luca Battaglini & Elena Motterle & Marco Bertamini, 2023. "Foveal feedback in perceptual processing: Contamination of neural representations and task difficulty effects," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-19, October.
    9. Nadine Dijkstra & Stephen M. Fleming, 2023. "Subjective signal strength distinguishes reality from imagination," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Serra E. Favila & Brice A. Kuhl & Jonathan Winawer, 2022. "Perception and memory have distinct spatial tuning properties in human visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    11. Kai Ueltzhöffer & Diana J N Armbruster-Genç & Christian J Fiebach, 2015. "Stochastic Dynamics Underlying Cognitive Stability and Flexibility," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-46, June.
    12. Mohammad Zia Ul Haq Katshu & Giovanni d'Avossa, 2014. "Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59825-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.