IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59708-z.html
   My bibliography  Save this article

Dual inhibition of DNA-PK and Polϴ boosts precision of diverse prime editing systems

Author

Listed:
  • Louis C. Dacquay

    (AstraZeneca
    Promega Corporation)

  • Panagiotis Antoniou

    (AstraZeneca)

  • Astrid Mentani

    (AstraZeneca)

  • Niklas Selfjord

    (AstraZeneca)

  • Hanna Mårtensson

    (AstraZeneca)

  • Pei-Pei Hsieh

    (AstraZeneca)

  • Salman Mustfa

    (AstraZeneca)

  • George Thom

    (AstraZeneca)

  • Sandra Wimberger

    (AstraZeneca)

  • Mike Firth

    (AstraZeneca)

  • Nina Akrap

    (AstraZeneca)

  • Marcello Maresca

    (AstraZeneca)

  • Martin Peterka

    (AstraZeneca)

Abstract

Prime editing is a genome engineering tool that allows installation of various small edits with high precision. However, prime editing efficiency and purity can vary widely across different edits, genomic targets, and cell types. Prime editing typically offers more precise editing outcomes compared to other genome editing methods such as homology-directed repair. However, it can still result in significant rates of unintended editing outcomes, such as indels or imprecise prime edits. This issue is particularly notable in systems utilizing a second nicking gRNA, such as PE3 and PE5, as well as in dual pegRNA systems and fully active nuclease systems such as PEn, which increase efficiency but compromise precision. In this work, we show that pharmacological inhibition of DNA-PK and Polϴ, two major mediators of mutagenic DNA repair pathways, improves precision of PEn, PE3, PE5, PE7, and dual pegRNA editing systems, including TwinPE, HOPE, and Bi-PE, across multiple genomic loci and edit types. We show that co-inhibition of DNA-PK and Polϴ mitigates both prime editing-unrelated indels and prime editing by-products such as template duplications. Moreover, in the case of PEn, this strategy also substantially improved the off-target editing profile. Together, our data establish small molecule modulation of DNA repair pathways as a general strategy to maximize the precision of diverse prime editing systems.

Suggested Citation

  • Louis C. Dacquay & Panagiotis Antoniou & Astrid Mentani & Niklas Selfjord & Hanna Mårtensson & Pei-Pei Hsieh & Salman Mustfa & George Thom & Sandra Wimberger & Mike Firth & Nina Akrap & Marcello Mares, 2025. "Dual inhibition of DNA-PK and Polϴ boosts precision of diverse prime editing systems," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59708-z
    DOI: 10.1038/s41467-025-59708-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59708-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59708-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sandra Wimberger & Nina Akrap & Mike Firth & Johan Brengdahl & Susanna Engberg & Marie K. Schwinn & Michael R. Slater & Anders Lundin & Pei-Pei Hsieh & Songyuan Li & Silvia Cerboni & Jonathan Sumner &, 2023. "Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Xiangyang Li & Guiquan Zhang & Shisheng Huang & Yao Liu & Jin Tang & Mingtian Zhong & Xin Wang & Wenjun Sun & Yuan Yao & Quanjiang Ji & Xiaolong Wang & Jianghuai Liu & Shiqiang Zhu & Xingxu Huang, 2023. "Development of a versatile nuclease prime editor with upgraded precision," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Youcai Xiong & Yinyu Su & Ruigao He & Xiaosong Han & Sheng Li & Minghuan Liu & Xiaoning Xi & Zijia Liu & Heng Wang & Shengsong Xie & Xuewen Xu & Kui Li & Jifeng Zhang & Jie Xu & Xinyun Li & Shuhong Zh, 2025. "EXPERT expands prime editing efficiency and range of large fragment edits," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Jun Yan & Paul Oyler-Castrillo & Purnima Ravisankar & Carl C. Ward & Sébastien Levesque & Yangwode Jing & Danny Simpson & Anqi Zhao & Hui Li & Weihao Yan & Laine Goudy & Ralf Schmidt & Sabrina C. Soll, 2024. "Improving prime editing with an endogenous small RNA-binding protein," Nature, Nature, vol. 628(8008), pages 639-647, April.
    5. Andrew V. Anzalone & Peyton B. Randolph & Jessie R. Davis & Alexander A. Sousa & Luke W. Koblan & Jonathan M. Levy & Peter J. Chen & Christopher Wilson & Gregory A. Newby & Aditya Raguram & David R. L, 2019. "Search-and-replace genome editing without double-strand breaks or donor DNA," Nature, Nature, vol. 576(7785), pages 149-157, December.
    6. Martin Peterka & Nina Akrap & Songyuan Li & Sandra Wimberger & Pei-Pei Hsieh & Dmitrii Degtev & Burcu Bestas & Jack Barr & Stijn Plassche & Patricia Mendoza-Garcia & Saša Šviković & Grzegorz Sienski &, 2022. "Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronghong Liang & Shan Wang & Yibo Cai & Zhenyu Li & Ka Ming Li & Jingjing Wei & Chao Sun & Haocheng Zhu & Kunling Chen & Caixia Gao, 2025. "Circular RNA-mediated inverse prime editing in human cells," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Panagiotis Antoniou & Louis Dacquay & Hanna Mårtensson & Katja Madeyski-Bengtson & Anna-Lena Loyd & Anna Shiriaeva & Euan Gordon & Salman Mustfa & George Thom & Pei-Pei Hsieh & Saša Šviković & Mike Fi, 2025. "Modified pegRNAs mitigate scaffold-derived prime editing by-products," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Monica Rengifo-Gonzalez & Maria-Vittoria Mazzuoli & Axel B. Janssen & Anne-Stéphanie Rueff & Jessica Burnier & Xue Liu & Jan-Willem Veening, 2025. "Make-or-break prime editing for genome engineering in Streptococcus pneumoniae," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    4. Xiangyang Li & Guiquan Zhang & Shisheng Huang & Yao Liu & Jin Tang & Mingtian Zhong & Xin Wang & Wenjun Sun & Yuan Yao & Quanjiang Ji & Xiaolong Wang & Jianghuai Liu & Shiqiang Zhu & Xingxu Huang, 2023. "Development of a versatile nuclease prime editor with upgraded precision," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Youcai Xiong & Yinyu Su & Ruigao He & Xiaosong Han & Sheng Li & Minghuan Liu & Xiaoning Xi & Zijia Liu & Heng Wang & Shengsong Xie & Xuewen Xu & Kui Li & Jifeng Zhang & Jie Xu & Xinyun Li & Shuhong Zh, 2025. "EXPERT expands prime editing efficiency and range of large fragment edits," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    6. Qichen Yuan & Hongzhi Zeng & Tyler C. Daniel & Qingzhuo Liu & Yongjie Yang & Emmanuel C. Osikpa & Qiaochu Yang & Advaith Peddi & Liliana M. Abramson & Boyang Zhang & Yong Xu & Xue Gao, 2024. "Orthogonal and multiplexable genetic perturbations with an engineered prime editor and a diverse RNA array," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Sébastien Levesque & Diana Mayorga & Jean-Philippe Fiset & Claudia Goupil & Alexis Duringer & Andréanne Loiselle & Eva Bouchard & Daniel Agudelo & Yannick Doyon, 2022. "Marker-free co-selection for successive rounds of prime editing in human cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Yidian Fu & Xiaoyu He & Liang Ma & Xin D. Gao & Pengpeng Liu & Hanhan Shi & Peiwei Chai & Shengfang Ge & Renbing Jia & David R. Liu & Xianqun Fan & Zhi Yang, 2025. "In vivo prime editing rescues photoreceptor degeneration in nonsense mutant retinitis pigmentosa," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    9. Arianna Moiani & Gil Letort & Sabrina Lizot & Anne Chalumeau & Chloe Foray & Tristan Felix & Diane Clerre & Sonal Temburni-Blake & Patrick Hong & Sophie Leduc & Noemie Pinard & Alan Marechal & Eduardo, 2024. "Non-viral DNA delivery and TALEN editing correct the sickle cell mutation in hematopoietic stem cells," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    10. Dmitrii Degtev & Jack Bravo & Aikaterini Emmanouilidi & Aleksandar Zdravković & Oi Kuan Choong & Julia Liz Touza & Niklas Selfjord & Isabel Weisheit & Margherita Francescatto & Pinar Akcakaya & Michel, 2024. "Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Chao Yang & Qingxiao Fang & Mengyu Li & Jin Zhang & Rui Li & Tianxing Zhou & Keshan Wang & Jie Deng & Xiuchao Wang & Chongbiao Huang & Yukuan Feng & Xiaoping Zhang & Lei Shi & Changhao Bi & Xueli Zhan, 2025. "Prime editor with rational design and AI-driven optimization for reverse editing window and enhanced fidelity," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    12. Qiwen Su-Tobon & Jiayi Fan & Michael Goldstein & Kevin Feeney & Hongyuan Ren & Patrick Autissier & Peiyi Wang & Yingzi Huang & Udayan Mohanty & Jia Niu, 2025. "CRISPR-Hybrid: A CRISPR-Mediated Intracellular Directed Evolution Platform for RNA Aptamers," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Lisa Maria Riedmayr & Klara Sonnie Hinrichsmeyer & Stefan Bernhard Thalhammer & David Manuel Mittas & Nina Karguth & Dina Yehia Otify & Sybille Böhm & Valentin Johannes Weber & Michael David Bartosche, 2023. "mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    15. Ronghao Chen & Yu Cao & Yajing Liu & Dongdong Zhao & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Zhaohui Zhong & Guanqing Liu & Zhongjie Tang & Shuyue Xiang & Liang Yang & Lan Huang & Yao He & Tingting Fan & Shishi Liu & Xuelian Zheng & Tao Zhang & Yiping Qi & Jian Huang & Yong Zhang, 2023. "Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Jidong Fei & Dongdong Zhao & Caiyi Pang & Ju Li & Siwei Li & Wentao Qiao & Juan Tan & Changhao Bi & Xueli Zhang, 2025. "Mismatch prime editing gRNA increased efficiency and reduced indels," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. You Li & Zhiqiang Li & Ruiling Chen & Min Lian & Hanxiao Wang & Yiran Wei & Zhengrui You & Jun Zhang & Bo Li & Yikang Li & Bingyuan Huang & Yong Chen & Qiaoyan Liu & Zhuwan Lyu & Xueying Liang & Qi Mi, 2023. "A regulatory variant at 19p13.3 is associated with primary biliary cholangitis risk and ARID3A expression," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. You-Jeong Kim & Dayoung Yun & Jungjoon K. Lee & Cheulhee Jung & Aram J. Chung, 2024. "Highly efficient CRISPR-mediated genome editing through microfluidic droplet cell mechanoporation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59708-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.