IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59571-y.html
   My bibliography  Save this article

The immune NIK1/RPL10/LIMYB signaling module regulates photosynthesis and translation under biotic and abiotic stresses

Author

Listed:
  • Marco Aurélio Ferreira

    (Universidade Federal de Viçosa
    Universidade Federal de Viçosa)

  • Ruan M. Teixeira

    (Universidade Federal de Viçosa
    Universidade Federal de Viçosa)

  • Otávio J. B. Brustolini

    (Universidade Federal de Viçosa
    National Laboratory for Scientific Computing (LNCC))

  • Thainá F. F. Saia

    (Universidade Federal de Viçosa)

  • James Jean-Baptiste

    (Universidade Federal de Viçosa)

  • Nathalia G. A. Ribeiro

    (Universidade Federal de Viçosa)

  • Sâmera S. Breves

    (Universidade Federal de Viçosa)

  • Fellipe R. Sampaio

    (Universidade Federal de Viçosa)

  • Eulálio G. D. Santos

    (Universidade Federal de Viçosa
    Universidade Federal de Viçosa)

  • Borys A. Leon

    (Universidade Federal de Viçosa)

  • Celio C. Oliveira

    (Brazilian Center for Research in Energy and Materials (CNPEM))

  • Christiane E. M. Duarte

    (Universidade Federal de Viçosa
    Universidade do Estado de Minas Gerais)

  • Lucas L. Lima

    (Universidade Federal de Viçosa)

  • Leandro L. Oliveira

    (Universidade Federal de Viçosa)

  • Humberto J. O. Ramos

    (Universidade Federal de Viçosa
    Universidade Federal de Viçosa)

  • Pedro A. B. Reis

    (Universidade Federal de Viçosa
    Universidade Federal de Viçosa)

  • Elizabeth P. B. Fontes

    (Universidade Federal de Viçosa
    Universidade Federal de Viçosa)

Abstract

Photosynthesis and translation are targets of metabolic control and development in plants, yet how stress signals coordinately regulate these opposing energy-producing and consuming processes remains enigmatic. Here, we unravel a growth control circuit that ties photosynthesis to translational control in response to biotic and abiotic signals. Our findings reveal that the L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), a key player of the NUCLEAR SHUTTLE PROTEIN-INTERACTING KINASE 1 (NIK1)/ RIBOSOMAL PROTEIN L10 (RPL10) antiviral signaling pathway, not only downregulates translation genes, but also represses photosynthesis-related genes and photosynthesis itself. LIMYB repressor activity, regulated by phosphorylation, is crucial for the decline in photosynthesis under stress. NIK1 activation by PAMPs or the phosphomimetic NIK1-T474D represses photosynthesis-related genes and photosynthesis in control but not in limyb lines. Furthermore, heat and osmotic stress also activate the NIK1/RPL10/LIMYB signaling circuit in wild type. These stresses induce NIK1 phosphorylation, but not marker gene repression, in limyb, indicating that LIMYB connects NIK1 activation to stress-mediated downregulation of translation- and photosynthesis-related genes. This coordinated repression via the NIK1/RPL10/LIMYB module may help plants adapt to changing environments.

Suggested Citation

  • Marco Aurélio Ferreira & Ruan M. Teixeira & Otávio J. B. Brustolini & Thainá F. F. Saia & James Jean-Baptiste & Nathalia G. A. Ribeiro & Sâmera S. Breves & Fellipe R. Sampaio & Eulálio G. D. Santos & , 2025. "The immune NIK1/RPL10/LIMYB signaling module regulates photosynthesis and translation under biotic and abiotic stresses," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59571-y
    DOI: 10.1038/s41467-025-59571-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59571-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59571-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cristiane Zorzatto & João Paulo B. Machado & Kênia V. G. Lopes & Kelly J. T. Nascimento & Welison A. Pereira & Otávio J. B. Brustolini & Pedro A. B. Reis & Iara P. Calil & Michihito Deguchi & Gilberto, 2015. "NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism," Nature, Nature, vol. 520(7549), pages 679-682, April.
    2. Elwira Smakowska-Luzan & G. Adam Mott & Katarzyna Parys & Martin Stegmann & Timothy C Howton & Mehdi Layeghifard & Jana Neuhold & Anita Lehner & Jixiang Kong & Karin Grünwald & Natascha Weinberger & S, 2018. "An extracellular network of Arabidopsis leucine-rich repeat receptor kinases," Nature, Nature, vol. 553(7688), pages 342-346, January.
    3. Elwira Smakowska-Luzan & G. Adam Mott & Katarzyna Parys & Martin Stegmann & Timothy C Howton & Mehdi Layeghifard & Jana Neuhold & Anita Lehner & Jixiang Kong & Karin Grünwald & Natascha Weinberger & S, 2018. "Publisher Correction: An extracellular network of Arabidopsis leucine-rich repeat receptor kinases," Nature, Nature, vol. 561(7722), pages 8-8, September.
    4. Bo Li & Marco Aurélio Ferreira & Mengling Huang & Luiz Fernando Camargos & Xiao Yu & Ruan M. Teixeira & Paola A. Carpinetti & Giselle C. Mendes & Bianca C. Gouveia-Mageste & Chenglong Liu & Claudia S., 2019. "The receptor-like kinase NIK1 targets FLS2/BAK1 immune complex and inversely modulates antiviral and antibacterial immunity," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    5. Hadia Ahmed & T. C. Howton & Yali Sun & Natascha Weinberger & Youssef Belkhadir & M. Shahid Mukhtar, 2018. "Network biology discovers pathogen contact points in host protein-protein interactomes," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andra-Octavia Roman & Pedro Jimenez-Sandoval & Sebastian Augustin & Caroline Broyart & Ludwig A. Hothorn & Julia Santiago, 2022. "HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Du-Hwa Lee & Ho-Seok Lee & Min-Soo Choi & Katarzyna Parys & Kaori Honda & Yasumitsu Kondoh & Jung-Min Lee & Natalie Edelbacher & Geon Heo & Balaji Enugutti & Hiroyuki Osada & Ken Shirasu & Youssef Bel, 2024. "Reprogramming of flagellin receptor responses with surrogate ligands," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yong Pei & Peiyun Ji & Jierui Si & Hanqing Zhao & Sicong Zhang & Ruofei Xu & Huijun Qiao & Weiwei Duan & Danyu Shen & Zhiyuan Yin & Daolong Dou, 2023. "A Phytophthora receptor-like kinase regulates oospore development and can activate pattern-triggered plant immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Wang, Longyun & Mou, Jianhong & Dai, Bitao & Tan, Suoyi & Cai, Mengsi & Chen, Huan & Jin, Zhen & Sun, Guiquan & Lu, Xin, 2024. "Influential nodes identification based on hierarchical structure," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    6. Zongyu Gao & Dingliang Zhang & Xiaoling Wang & Xin Zhang & Zhiyan Wen & Qianshen Zhang & Dawei Li & Savithramma P. Dinesh-Kumar & Yongliang Zhang, 2022. "Coat proteins of necroviruses target 14-3-3a to subvert MAPKKKα-mediated antiviral immunity in plants," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Changxuan Xia & Guohua Liang & Kang Chong & Yunyuan Xu, 2023. "The COG1-OsSERL2 complex senses cold to trigger signaling network for chilling tolerance in japonica rice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59571-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.