Author
Listed:
- Zhi Cheng
(Shenzhen University
Wuhan University of Technology
Peking University)
- Xiangyi Wang
(Shenzhen University)
- Xiangmeng Lv
(Shenzhen University)
- Jianming Sun
(Harbin Engineering University)
- Zhaoqiang Chu
(Harbin Engineering University)
- Jing Zhou
(Wuhan University of Technology)
- Shuxiang Dong
(Peking University)
Abstract
Traditional MHz and GHz electromagnetic antennas face challenges of high attenuation rate in cross-medium communication; while mechanical antennas are hindered by their large size, high energy consumption and weak radiation capacity. Here, we report a centimeter-scale, wearable ultrasonically-actuated magnetic-dipole rotating resonator (UA-MDRR) for efficient extremely low frequency (ELF) electromagnetic wave transmission in extreme environments. The UA-MDRR employs a small multilayer piezoelectric ceramic (0.11 cm³) to rotate a disc-type NdFeB magnet, generating ELF radiation through an electro-mechanical-magnetic (EMM) coupling effect. This device achieves a high emission capacity of 24,000 nT/cm³@1 m, outperforming the state-of-the-art resonators/antennas by one to two orders of magnitude. It can emit a magnetic field strength of 2.64 pT in air and 2.12 pT underwater at 100 m, respectively, while consuming only 0.61 W of power. This innovation represents a groundbreaking advancement in cross-medium communication, offering a mobile wearable device for emergency communication in seawater for life saving.
Suggested Citation
Zhi Cheng & Xiangyi Wang & Xiangmeng Lv & Jianming Sun & Zhaoqiang Chu & Jing Zhou & Shuxiang Dong, 2025.
"A wearable, ultrasonically-actuated magnetic-dipole rotating resonator for mobile communication in cross-medium environment,"
Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59539-y
DOI: 10.1038/s41467-025-59539-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59539-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.