IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59500-z.html
   My bibliography  Save this article

Spatial and stoichiometric in situ analysis of biomolecular oligomerization at single-protein resolution

Author

Listed:
  • Luciano A. Masullo

    (Max Planck Institute of Biochemistry)

  • Rafal Kowalewski

    (Max Planck Institute of Biochemistry
    Ludwig Maximilian University)

  • Monique Honsa

    (Max Planck Institute of Biochemistry
    Ludwig Maximilian University)

  • Larissa Heinze

    (Max Planck Institute of Biochemistry
    Ludwig Maximilian University)

  • Shuhan Xu

    (Max Planck Institute of Biochemistry)

  • Philipp R. Steen

    (Max Planck Institute of Biochemistry
    Ludwig Maximilian University)

  • Heinrich Grabmayr

    (Max Planck Institute of Biochemistry
    Ludwig Maximilian University)

  • Isabelle Pachmayr

    (Max Planck Institute of Biochemistry
    Ludwig Maximilian University)

  • Susanne C. M. Reinhardt

    (Max Planck Institute of Biochemistry
    Ludwig Maximilian University)

  • Ana Perovic

    (Max Planck Institute of Biochemistry)

  • Jisoo Kwon

    (Max Planck Institute of Biochemistry)

  • Ethan P. Oxley

    (Monash University)

  • Ross A. Dickins

    (Monash University)

  • Maartje M. C. Bastings

    (École Polytechnique Fédérale de Lausanne)

  • Ian A. Parish

    (Peter MacCallum Cancer Centre
    The University of Melbourne)

  • Ralf Jungmann

    (Max Planck Institute of Biochemistry
    Ludwig Maximilian University)

Abstract

Latest advances in super-resolution microscopy allow the study of subcellular features at the level of single proteins, which could lead to discoveries in fundamental biological processes, specifically in cell signaling mediated by membrane receptors. Despite these advances, accurately extracting quantitative information on molecular arrangements of proteins at the 1–20 nm scale through rigorous image analysis remains a significant challenge. Here, we present SPINNA (Single-Protein Investigation via Nearest-Neighbor Analysis): an analysis framework that compares nearest-neighbor distances from experimental single-protein position data with those obtained from realistic simulations based on a user-defined model of protein oligomerization states. We demonstrate SPINNA in silico, in vitro, and in cells. In particular, we quantitatively assess the oligomerization of the epidermal growth factor receptor (EGFR) upon EGF treatment and investigate the dimerization of CD80 and PD-L1, key surface ligands involved in immune cell signaling. Importantly, we offer an open-source Python implementation and a GUI to facilitate SPINNA’s widespread use in the scientific community.

Suggested Citation

  • Luciano A. Masullo & Rafal Kowalewski & Monique Honsa & Larissa Heinze & Shuhan Xu & Philipp R. Steen & Heinrich Grabmayr & Isabelle Pachmayr & Susanne C. M. Reinhardt & Ana Perovic & Jisoo Kwon & Eth, 2025. "Spatial and stoichiometric in situ analysis of biomolecular oligomerization at single-protein resolution," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59500-z
    DOI: 10.1038/s41467-025-59500-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59500-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59500-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark F. Maurer & Katherine E. Lewis & Joseph L. Kuijper & Dan Ardourel & Chelsea J. Gudgeon & Siddarth Chandrasekaran & Sherri L. Mudri & Kayla N. Kleist & Chris Navas & Martin F. Wolfson & Mark W. Ri, 2022. "The engineered CD80 variant fusion therapeutic davoceticept combines checkpoint antagonism with conditional CD28 costimulation for anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Lisa S. Fischer & Christoph Klingner & Thomas Schlichthaerle & Maximilian T. Strauss & Ralph Böttcher & Reinhard Fässler & Ralf Jungmann & Carsten Grashoff, 2021. "Quantitative single-protein imaging reveals molecular complex formation of integrin, talin, and kindlin during cell adhesion," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 636(8042), pages 4-4, December.
    4. Sarah R. Needham & Selene K. Roberts & Anton Arkhipov & Venkatesh P. Mysore & Christopher J. Tynan & Laura C. Zanetti-Domingues & Eric T. Kim & Valeria Losasso & Dimitrios Korovesis & Michael Hirsch &, 2016. "EGFR oligomerization organizes kinase-active dimers into competent signalling platforms," Nature Communications, Nature, vol. 7(1), pages 1-14, December.
    5. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 630(8016), pages 493-500, June.
    6. Carin C. Stamper & Yan Zhang & James F. Tobin & David V. Erbe & Shinji Ikemizu & Simon J. Davis & Mark L. Stahl & Jasbir Seehra & William S. Somers & Lidia Mosyak, 2001. "Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses," Nature, Nature, vol. 410(6828), pages 608-611, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Julian O. Streit & Sammy H. S. Chan & Saifu Daya & John Christodoulou, 2025. "Rational design of 19F NMR labelling sites to probe protein structure and interactions," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    4. Ai Tamura & Kazuyuki Yamagata & Takashi Kono & Masanori Fujimoto & Takahiro Fuchigami & Motoi Nishimura & Masataka Yokoyama & Akitoshi Nakayama & Naoko Hashimoto & Ikki Sakuma & Nobuyuki Mitsukawa & Y, 2025. "p53-inducible lncRNA LOC644656 causes genotoxic stress-induced stem cell maldifferentiation and cancer chemoresistance," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    5. Gašper Šolinc & Marija Srnko & Franci Merzel & Ana Crnković & Mirijam Kozorog & Marjetka Podobnik & Gregor Anderluh, 2025. "Cryo-EM structures of a protein pore reveal a cluster of cholesterol molecules and diverse roles of membrane lipids," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Tae-Kyeong Jeong & R. Ciaran MacKenzie Frater & Jongha Yoon & Anja Groth & Ji-Joon Song, 2025. "CODANIN-1 sequesters ASF1 by using a histone H3 mimic helix to regulate the histone supply," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    7. Juan G. Carvajal-Patiño & Vincent Mallet & David Becerra & Luis Fernando Niño Vasquez & Carlos Oliver & Jérôme Waldispühl, 2025. "RNAmigos2: accelerated structure-based RNA virtual screening with deep graph learning," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    8. Wenkai Chen & Xueying Xu & Zhidan Zeng & Mingsen Zhou & Jiying Chen & Guangfu Hu & Anfu Shen & Dapeng Li & Liu Xiangjiang, 2025. "The role of pyruvate dehydrogenase in the lifespan determination of daphnids," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. John R. Horton & Meigen Yu & Jujun Zhou & Melody Tran & Rithvi R. Anakal & Yue Lu & Robert M. Blumenthal & Xiaotian Zhang & Yun Huang & Xing Zhang & Xiaodong Cheng, 2025. "Multimeric transcription factor BCL11A utilizes two zinc-finger tandem arrays to bind clustered short sequence motifs," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    10. Elisa Posani & Pavel Janoš & Daniel Haack & Navtej Toor & Massimiliano Bonomi & Alessandra Magistrato & Giovanni Bussi, 2025. "Ensemble refinement of mismodeled cryo-EM RNA structures using all-atom simulations," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Stephen A. Rettie & Katelyn V. Campbell & Asim K. Bera & Alex Kang & Simon Kozlov & Yensi Flores Bueso & Joshmyn Cruz & Maggie Ahlrichs & Suna Cheng & Stacey R. Gerben & Mila Lamb & Analisa Murray & V, 2025. "Cyclic peptide structure prediction and design using AlphaFold2," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    12. Melissa V. Gammons & Elsa Franco-Echevarría & Tie-Mei Li & Trevor J. Rutherford & Miha Renko & Christopher Batters & Mariann Bienz, 2025. "Wnt signalosome assembly is governed by conformational flexibility of Axin and by the AP2 clathrin adaptor," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    13. Xiaofei Jiao & Zhongyang Liang & Jiwei Li & Long Bai & Jun Xu & Yidan Liu & Lin-Yu Lu, 2025. "Aberrant activation of chromosome asynapsis checkpoint triggers oocyte elimination," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    14. Tianyang Zhao & Kuipei Jin & Xiaodong Wang & Xiong Su & Youjun Wang & Mingming Gao & Wen Luo & Hongyuan Yang & Zhongzhou Yang, 2025. "GPAT4 sustains endoplasmic reticulum homeostasis in endocardial cells and safeguards heart development," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    15. Matthew D. Mann & Min Wang & Josephine C. Ferreon & Phoebe S. Tsoi & Michael P. Suess & Antrix Jain & Anna Malovannaya & Roberto Vera Alvarez & Bruce D. Pascal & Raj Kumar & Dean P. Edwards & Patrick , 2025. "Structural proteomics defines a sequential priming mechanism for the progesterone receptor," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    16. Ho Yee Joyce Fung & Sanraj R. Mittal & Ashley B. Niesman & Jenny Jiou & Binita Shakya & Takuya Yoshizawa & Ahmet E. Cansizoglu & Michael P. Rout & Yuh Min Chook, 2025. "Phosphate-dependent nuclear export via a non-classical NES class recognized by exportin Msn5," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    17. Fernanda A. Sala & Katja Ditter & Olexandr Dybkov & Henning Urlaub & Hauke S. Hillen, 2025. "Structural basis of Nipah virus RNA synthesis," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    18. Reilly Pidgeon & Sacha Mitchell & Michael Shamash & Layan Suleiman & Lharbi Dridi & Corinne F. Maurice & Bastien Castagner, 2025. "Diet-derived urolithin A is produced by a dehydroxylase encoded by human gut Enterocloster species," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    19. Qingshan Luo & Chengai Wang & Shuai Qiao & Shan Yu & Lianwan Chen & Seonghoon Kim & Kun Wang & Jiangge Zheng & Yong Zhang & Fan Wu & Xiaoguang Lei & Jizhong Lou & Michael Hennig & Wonpil Im & Long Mia, 2025. "Surface lipoprotein sorting by crosstalk between Lpt and Lol pathways in gram-negative bacteria," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    20. Luc Provencher & Wilson Nartey & Peter M. Brownlee & Austin W. Atkins & Jean-Philippe Gagné & Lou Baudrier & Nicholas S. Y. Ting & Cortt G. Piett & Shujuan Fang & Dustin D. Pearson & Shaun Moore & Pie, 2025. "CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair," Nature Communications, Nature, vol. 16(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59500-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.