IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59435-5.html
   My bibliography  Save this article

In vivo structure profiling reveals human cytosolic and mitochondrial tRNA structurome and interactome in response to stress

Author

Listed:
  • Noah Peña

    (University of Chicago)

  • Yichen Hou

    (University of Chicago)

  • Christopher P. Watkins

    (University of Chicago)

  • Sihao Huang

    (University of Chicago)

  • Wen Zhang

    (University of Chicago)

  • Christopher D. Katanski

    (University of Chicago)

  • Tao Pan

    (University of Chicago
    University of Chicago)

Abstract

Transfer RNA (tRNA) is the most abundant cellular RNA family in terms of copy numbers. It not only folds into defined structures but also has complex cellular interaction networks involving aminoacyl-tRNA synthetases, translation factors, and ribosomes. The human tRNAome is comprised of chromosomal-encoded tRNAs with a large sequence diversity and mitochondrial-encoded tRNAs with A/U-rich sequences and noncanonical tertiary interactions. How tRNA folding and interactions in a eukaryotic cell respond to stress is poorly understood. Here, we develop DM-DMS-MaPseq, which utilizes in vivo dimethyl-sulfate (DMS) chemical probing and mutational profiling (MaP) coupled with demethylase (DM) treatment in transcriptome-wide tRNA sequencing to profile structures and the cellular interactions of human chromosomal and mitochondrial-encoded tRNAs. We found that tRNAs maintain stable structures in vivo, but the in vivo DMS profiles are vastly different from those in vitro, which can be explained by their interactions with cellular proteins and the ribosome. We also identify cytosolic and mitochondrial tRNA structure and interaction changes upon arsenite treatment, a type of oxidative stress that induces translational reprogramming, which is consistent with global translation repression in both compartments. Our results reveal variations of tRNA structurome and dynamic interactome that have functional consequences in translational regulation.

Suggested Citation

  • Noah Peña & Yichen Hou & Christopher P. Watkins & Sihao Huang & Wen Zhang & Christopher D. Katanski & Tao Pan, 2025. "In vivo structure profiling reveals human cytosolic and mitochondrial tRNA structurome and interactome in response to stress," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59435-5
    DOI: 10.1038/s41467-025-59435-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59435-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59435-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59435-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.