IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62171-5.html
   My bibliography  Save this article

PAL-AI reveals genetic determinants that control poly(A)-tail length during oocyte maturation, with relevance to human fertility

Author

Listed:
  • Kehui Xiang

    (Howard Hughes Medical Institute
    Whitehead Institute for Biomedical Research
    Massachusetts Institute of Technology)

  • David P. Bartel

    (Howard Hughes Medical Institute
    Whitehead Institute for Biomedical Research
    Massachusetts Institute of Technology)

Abstract

In oocytes of mammals and other animals, gene regulation is mediated primarily through changes in poly(A)-tail length. Here, we introduce PAL-AI, an integrated neural network machine-learning model that accurately predicts tail-length changes in maturing oocytes of frogs and mammals. We show that PAL-AI learned known and previously unknown sequence elements and their contextual features that control poly(A)-tail length, enabling it to predict tail-length changes resulting from 3′-untranslated region single-nucleotide substitutions. It also predicted tail-length-mediated translational changes, allowing us to nominate genes important for oocyte maturation. When comparing predicted tail-length changes in human oocytes with genomic datasets of the All of Us Research Program and gnomAD, we found that genetic variants predicted to disrupt tail lengthening have been under negative selection in the human population, thereby linking mRNA tail lengthening to human female fertility.

Suggested Citation

  • Kehui Xiang & David P. Bartel, 2025. "PAL-AI reveals genetic determinants that control poly(A)-tail length during oocyte maturation, with relevance to human fertility," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62171-5
    DOI: 10.1038/s41467-025-62171-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62171-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62171-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Spitale & Ryan A. Flynn & Qiangfeng Cliff Zhang & Pete Crisalli & Byron Lee & Jong-Wha Jung & Hannes Y. Kuchelmeister & Pedro J. Batista & Eduardo A. Torre & Eric T. Kool & Howard Y. Chang, 2015. "Erratum: Structural imprints in vivo decode RNA regulatory mechanisms," Nature, Nature, vol. 527(7577), pages 264-264, November.
    2. Cai-Rong Yang & Gabriel Rajkovic & Enrico Maria Daldello & Xuan G. Luong & Jing Chen & Marco Conti, 2020. "The RNA-binding protein DAZL functions as repressor and activator of mRNA translation during oocyte maturation," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    3. Emily Kunce Stroup & Zhe Ji, 2023. "Deep learning of human polyadenylation sites at nucleotide resolution reveals molecular determinants of site usage and relevance in disease," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Siwei Chen & Laurent C. Francioli & Julia K. Goodrich & Ryan L. Collins & Masahiro Kanai & Qingbo Wang & Jessica Alföldi & Nicholas A. Watts & Christopher Vittal & Laura D. Gauthier & Timothy Poterba , 2024. "A genomic mutational constraint map using variation in 76,156 human genomes," Nature, Nature, vol. 625(7993), pages 92-100, January.
    5. Siwei Chen & Laurent C. Francioli & Julia K. Goodrich & Ryan L. Collins & Masahiro Kanai & Qingbo Wang & Jessica Alföldi & Nicholas A. Watts & Christopher Vittal & Laura D. Gauthier & Timothy Poterba , 2024. "Author Correction: A genomic mutational constraint map using variation in 76,156 human genomes," Nature, Nature, vol. 626(7997), pages 1-1, February.
    6. Robert C. Spitale & Ryan A. Flynn & Qiangfeng Cliff Zhang & Pete Crisalli & Byron Lee & Jong-Wha Jung & Hannes Y. Kuchelmeister & Pedro J. Batista & Eduardo A. Torre & Eric T. Kool & Howard Y. Chang, 2015. "Structural imprints in vivo decode RNA regulatory mechanisms," Nature, Nature, vol. 519(7544), pages 486-490, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leslie A. Smith & James A. Cahill & Ji-Hyun Lee & Kiley Graim, 2025. "Equitable machine learning counteracts ancestral bias in precision medicine," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Aowen Wang & Jiaqi Li & Hongyu Dong & Bocheng Xu & Qingyu Yin & Yanchao Xu & Jie Fu & Junbo Zhao, 2025. "Omnireg-gpt: a high-efficiency foundation model for comprehensive genomic sequence understanding," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    3. Amelia K. Haj & David S. Paul & Sean J. Jurgens & Harish Eswaran & Lu-Chen Weng & Justine Ryu & Alfonso Rodriguez Espada & Sharjeel Chaudhry & Louis M. Feingold & Kristen Burke & Satoshi Koyama & Xin , 2025. "Coagulation factor XII haploinsufficiency is protective against venous thromboembolism in a population-scale multidimensional analysis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Skyler L. Kelly & Eric J. Strobel, 2025. "Systematic analysis of cotranscriptional RNA folding using transcription elongation complex display," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    5. Yuwei Zhang & Jieyu Zhao & Xiaona Chen & Yulong Qiao & Jinjin Kang & Xiaofan Guo & Feng Yang & Kaixin Lyu & Yiliang Ding & Yu Zhao & Hao Sun & Chun-Kit Kwok & Huating Wang, 2024. "DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via m6A reader YTHDF1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Ryan Damme & Kongpan Li & Minjie Zhang & Jianhui Bai & Wilson H. Lee & Joseph D. Yesselman & Zhipeng Lu & Willem A. Velema, 2022. "Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Julie A. I. Thoms & Feng Yan & Henry R. Hampton & Sarah Davidson & Swapna Joshi & Jesslyn Saw & Chowdhury H. Sarowar & Xin Ying Lim & Andrea C. Nunez & Purvi M. Kakadia & Golam Sarower Bhuyan & Xiaohe, 2025. "Clinical response to azacitidine in MDS is associated with distinct DNA methylation changes in HSPCs," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    8. Haoran Zhu & Yuning Yang & Yunhe Wang & Fuzhou Wang & Yujian Huang & Yi Chang & Ka-chun Wong & Xiangtao Li, 2023. "Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Bo Yu & Pan Li & Qiangfeng Cliff Zhang & Lin Hou, 2022. "Differential analysis of RNA structure probing experiments at nucleotide resolution: uncovering regulatory functions of RNA structure," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Sepideh Tavakoli & Mohammad Nabizadeh & Amr Makhamreh & Howard Gamper & Caroline A. McCormick & Neda K. Rezapour & Ya-Ming Hou & Meni Wanunu & Sara H. Rouhanifard, 2023. "Semi-quantitative detection of pseudouridine modifications and type I/II hypermodifications in human mRNAs using direct long-read sequencing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Jun Pyo Kim & Minyoung Cho & Chanhee Kim & Hyunwoo Lee & Beomjin Jang & Sang-Hyuk Jung & Yujin Kim & In Gyeong Koh & Seoyeon Kim & Daeun Shin & Eun Hye Lee & Jong-Young Lee & YoungChan Park & Hyemin J, 2025. "Whole-genome sequencing analyses suggest novel genetic factors associated with Alzheimer’s disease and a cumulative effects model for risk liability," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    12. Debjit Khan & Iyappan Ramachandiran & Kommireddy Vasu & Arnab China & Krishnendu Khan & Fabio Cumbo & Dalia Halawani & Fulvia Terenzi & Isaac Zin & Briana Long & Gregory Costain & Susan Blaser & Amand, 2024. "Homozygous EPRS1 missense variant causing hypomyelinating leukodystrophy-15 alters variant-distal mRNA m6A site accessibility," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    13. Gongwang Yu & Yao Liu & Zizhang Li & Shuyun Deng & Zhuoxing Wu & Xiaoyu Zhang & Wenbo Chen & Junnan Yang & Xiaoshu Chen & Jian-Rong Yang, 2023. "Genome-wide probing of eukaryotic nascent RNA structure elucidates cotranscriptional folding and its antimutagenic effect," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Chenhui Zhao & Xueyan Hu & Xiudong Guan & Xiaojun Fu & Tingting Wang & Mengyuan Li & Xinze Liu & Jiarui Zhao & Di Wu & Fan Zhang & Jiaying Fu & Jiang Li & Tieqiang Zhang & Xiaochun Jiang & Changxiang , 2025. "Molecular landscape, subtypes, and therapeutic vulnerabilities of central nervous system solitary fibrous tumors," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    15. Jack W. J. Welland & Henry G. Barrow & Phillip J. Stansfeld & Janet E. Deane, 2025. "Conformational dynamics and membrane insertion mechanism of B4GALNT1 in ganglioside synthesis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    16. Ainara González-Iglesias & Aida Arcas & Ana Domingo-Muelas & Estefania Mancini & Joan Galcerán & Juan Valcárcel & Isabel Fariñas & M. Angela Nieto, 2024. "Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Marie C. Sadler & Alexander Apostolov & Caterina Cevallos & Chiara Auwerx & Diogo M. Ribeiro & Russ B. Altman & Zoltán Kutalik, 2025. "Leveraging large-scale biobank EHRs to enhance pharmacogenetics of cardiometabolic disease medications," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    18. Jonathan E. Shoag & Amoolya Srinivasa & Caitlin A. Loh & Mei Hong Liu & Emilie Lassen & Shana Melanaphy & Benjamin M. Costa & Marta Grońska-Pęski & Nisrine T. Jabara & Shany Picciotto & Una Choi & Any, 2025. "Direct measurement of the male germline mutation rate in individuals using sequential sperm samples," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    19. Yuan-Yuan Zhang & Cai-Tao Li & You-Jia Zhou & Hao Li & Jing Li & Qing-Ping Xiong & Wei Zhou & Wenze Huang & Qiangfeng Cliff Zhang & Yangfei Xiang & En-Duo Wang & Beisi Xu & Ru-Juan Liu, 2025. "A cohort of mRNAs undergo high-stoichiometry NSUN6-mediated site-specific m5C modification," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    20. Alexander L. Han & Chloe F. Sands & Dorota Matelska & Jessica C. Butts & Vida Ravanmehr & Fengyuan Hu & Esmeralda Villavicencio Gonzalez & Nicholas Katsanis & Carlos D. Bustamante & Quanli Wang & Slav, 2025. "Diverse ancestral representation improves genetic intolerance metrics," Nature Communications, Nature, vol. 16(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62171-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.