Author
Listed:
- Jumpei Ito
(The University of Tokyo
The University of Tokyo)
- Adam Strange
(The University of Tokyo)
- Wei Liu
(The University of Tokyo
University of Geneva Medical School
Swiss Institute of Bioinformatics)
- Gustav Joas
(The University of Tokyo
Karolinska Institutet)
- Spyros Lytras
(The University of Tokyo
MRC-University of Glasgow Centre for Virus Research)
- Kei Sato
(The University of Tokyo
The University of Tokyo
MRC-University of Glasgow Centre for Virus Research
The University of Tokyo)
Abstract
Successively emerging SARS-CoV-2 variants lead to repeated epidemic surges through escalated fitness (i.e., relative effective reproduction number between variants). Modeling the genotype–fitness relationship enables us to pinpoint the mutations boosting viral fitness and flag high-risk variants immediately after their detection. Here, we present CoVFit, a protein language model adapted from ESM-2, designed to predict variant fitness based solely on spike protein sequences. CoVFit was trained on genotype–fitness data derived from viral genome surveillance and functional mutation assays related to immune evasion. CoVFit successively ranked the fitness of unknown future variants harboring nearly 15 mutations with informative accuracy. CoVFit identified 959 fitness elevation events throughout SARS-CoV-2 evolution until late 2023. Furthermore, we show that CoVFit is applicable for predicting viral evolution through single amino acid mutations. Our study gives insight into the SARS-CoV-2 fitness landscape and provides a tool for efficiently identifying SARS-CoV-2 variants with higher epidemic risk.
Suggested Citation
Jumpei Ito & Adam Strange & Wei Liu & Gustav Joas & Spyros Lytras & Kei Sato, 2025.
"A protein language model for exploring viral fitness landscapes,"
Nature Communications, Nature, vol. 16(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59422-w
DOI: 10.1038/s41467-025-59422-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59422-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.