IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59401-1.html
   My bibliography  Save this article

Highly coherent two-color laser and its application for low-noise microwave generation

Author

Listed:
  • Bibo He

    (Peking University)

  • Jiachuan Yang

    (Peking University)

  • Fei Meng

    (National Institute of Metrology)

  • Jialiang Yu

    (Physikalisch-Technische Bundesanstalt)

  • Chenbo Zhang

    (Peking University)

  • Qi-Fan Yang

    (Peking University)

  • Yani Zuo

    (National Institute of Metrology)

  • Yige Lin

    (National Institute of Metrology)

  • Zhangyuan Chen

    (Peking University)

  • Zhanjun Fang

    (National Institute of Metrology)

  • Xiaopeng Xie

    (Peking University)

Abstract

Two-color lasers with high coherence are essential for precision measurements and low-noise photonic microwave generation. However, conventional two-color lasers often suffer from reduced coherence when the frequency spacing is large. Here, we leverage the Pound-Drever-Hall technique to synchronize two lasers to a common ultra-stable optical reference cavity to break through the thermal noise constraint, achieving a highly coherent two-color laser. By overcoming non-common mode noise, we achieve an exceptional fractional frequency instability of 2.7 × 10−17 at 1 second, normalized to the optical frequency. To characterize coherence across large frequency spacings, we use electro-optical frequency division to transfer the stability of a 0.5 THz spaced two-color laser to a 25 GHz microwave signal. The resulting 25 GHz signals exhibit remarkable phase noise of − 74 dBc Hz−1 at 1 Hz and − 120 dBc Hz−1 at 100 Hz. Our results pave the way for a new era in precision measurement and light-matter interaction.

Suggested Citation

  • Bibo He & Jiachuan Yang & Fei Meng & Jialiang Yu & Chenbo Zhang & Qi-Fan Yang & Yani Zuo & Yige Lin & Zhangyuan Chen & Zhanjun Fang & Xiaopeng Xie, 2025. "Highly coherent two-color laser and its application for low-noise microwave generation," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59401-1
    DOI: 10.1038/s41467-025-59401-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59401-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59401-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. J. Bloom & T. L. Nicholson & J. R. Williams & S. L. Campbell & M. Bishof & X. Zhang & W. Zhang & S. L. Bromley & J. Ye, 2014. "An optical lattice clock with accuracy and stability at the 10−18 level," Nature, Nature, vol. 506(7486), pages 71-75, February.
    2. Eric A. Kittlaus & Danny Eliyahu & Setareh Ganji & Skip Williams & Andrey B. Matsko & Ken B. Cooper & Siamak Forouhar, 2021. "A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Igor Kudelin & William Groman & Qing-Xin Ji & Joel Guo & Megan L. Kelleher & Dahyeon Lee & Takuma Nakamura & Charles A. McLemore & Pedram Shirmohammadi & Samin Hanifi & Haotian Cheng & Naijun Jin & Lu, 2024. "Photonic chip-based low-noise microwave oscillator," Nature, Nature, vol. 627(8004), pages 534-539, March.
    4. Shuman Sun & Beichen Wang & Kaikai Liu & Mark W. Harrington & Fatemehsadat Tabatabaei & Ruxuan Liu & Jiawei Wang & Samin Hanifi & Jesse S. Morgan & Mandana Jahanbozorgi & Zijiao Yang & Steven M. Bower, 2024. "Integrated optical frequency division for microwave and mmWave generation," Nature, Nature, vol. 627(8004), pages 540-545, March.
    5. Lars S. Madsen & Fabian Laudenbach & Mohsen Falamarzi. Askarani & Fabien Rortais & Trevor Vincent & Jacob F. F. Bulmer & Filippo M. Miatto & Leonhard Neuhaus & Lukas G. Helt & Matthew J. Collins & Adr, 2022. "Quantum computational advantage with a programmable photonic processor," Nature, Nature, vol. 606(7912), pages 75-81, June.
    6. Léo Djevahirdjian & Loïc Lechevallier & Marie-Aline Martin-Drumel & Olivier Pirali & Guillaume Ducournau & Rédha Kassi & Samir Kassi, 2023. "Frequency stable and low phase noise THz synthesis for precision spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yun Zhao & Jae K. Jang & Garrett J. Beals & Karl J. McNulty & Xingchen Ji & Yoshitomo Okawachi & Michal Lipson & Alexander L. Gaeta, 2024. "All-optical frequency division on-chip using a single laser," Nature, Nature, vol. 627(8004), pages 546-552, March.
    8. Cheng Wang & Mian Zhang & Xi Chen & Maxime Bertrand & Amirhassan Shams-Ansari & Sethumadhavan Chandrasekhar & Peter Winzer & Marko Lončar, 2018. "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Nature, vol. 562(7725), pages 101-104, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaomin Lv & Binbin Nie & Chen Yang & Rui Ma & Ze Wang & Yanwu Liu & Xing Jin & Kaixuan Zhu & Zhenyu Chen & Du Qian & Guanyu Zhang & Guowei Lv & Qihuang Gong & Fang Bo & Qi-Fan Yang, 2025. "Broadband microwave-rate dark pulse microcombs in dissipation-engineered LiNbO3 microresonators," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    2. Peng Liu & Qing-Xin Ji & Jin-Yu Liu & Jinhao Ge & Mingxiao Li & Joel Guo & Warren Jin & Maodong Gao & Yan Yu & Avi Feshali & Mario Paniccia & John E. Bowers & Kerry J. Vahala, 2025. "Near-visible integrated soliton microcombs with detectable repetition rates," Nature Communications, Nature, vol. 16(1), pages 1-6, December.
    3. Dominik D. Bühler & Matthias Weiß & Antonio Crespo-Poveda & Emeline D. S. Nysten & Jonathan J. Finley & Kai Müller & Paulo V. Santos & Mauricio M. Lima & Hubert J. Krenner, 2022. "On-chip generation and dynamic piezo-optomechanical rotation of single photons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    5. Martin Ringbauer & Marcel Hinsche & Thomas Feldker & Paul K. Faehrmann & Juani Bermejo-Vega & Claire L. Edmunds & Lukas Postler & Roman Stricker & Christian D. Marciniak & Michael Meth & Ivan Pogorelo, 2025. "Verifiable measurement-based quantum random sampling with trapped ions," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    6. Xinyu Ma & Zhaoyu Cai & Chijie Zhuang & Xiangdong Liu & Zhecheng Zhang & Kewei Liu & Bo Cao & Jinliang He & Changxi Yang & Chengying Bao & Rong Zeng, 2024. "Integrated microcavity electric field sensors using Pound-Drever-Hall detection," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Chengying Bao & Zhiquan Yuan & Lue Wu & Myoung-Gyun Suh & Heming Wang & Qiang Lin & Kerry J. Vahala, 2021. "Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Dongliang Wang & Yikun Nie & Gaolei Hu & Hon Ki Tsang & Chaoran Huang, 2024. "Ultrafast silicon photonic reservoir computing engine delivering over 200 TOPS," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Xinyi Zhu & Benjamin Crockett & Connor M. L. Rowe & Hao Sun & José Azaña, 2024. "Agile manipulation of the time-frequency distribution of high-speed electromagnetic waves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Joshua C. Lederman & Weipeng Zhang & Thomas Ferreira Lima & Eric C. Blow & Simon Bilodeau & Bhavin J. Shastri & Paul R. Prucnal, 2023. "Real-time photonic blind interference cancellation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Dylan Renaud & Daniel Rimoli Assumpcao & Graham Joe & Amirhassan Shams-Ansari & Di Zhu & Yaowen Hu & Neil Sinclair & Marko Loncar, 2023. "Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Francesco Bova & Avi Goldfarb & Roger G. Melko, 2023. "Quantum Economic Advantage," Management Science, INFORMS, vol. 69(2), pages 1116-1126, February.
    16. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Yunping Bai & Yifu Xu & Shifan Chen & Xiaotian Zhu & Shuai Wang & Sirui Huang & Yuhang Song & Yixuan Zheng & Zhihui Liu & Sim Tan & Roberto Morandotti & Sai T. Chu & Brent E. Little & David J. Moss & , 2025. "TOPS-speed complex-valued convolutional accelerator for feature extraction and inference," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    18. Ileana-Cristina Benea-Chelmus & Sydney Mason & Maryna L. Meretska & Delwin L. Elder & Dmitry Kazakov & Amirhassan Shams-Ansari & Larry R. Dalton & Federico Capasso, 2022. "Gigahertz free-space electro-optic modulators based on Mie resonances," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Mohammadreza Soltaninia & Junpeng Zhan, 2025. "Quantum Neural Networks for Solving Power System Transient Simulation Problem," Energies, MDPI, vol. 18(10), pages 1-19, May.
    20. Timothy P. McKenna & Hubert S. Stokowski & Vahid Ansari & Jatadhari Mishra & Marc Jankowski & Christopher J. Sarabalis & Jason F. Herrmann & Carsten Langrock & Martin M. Fejer & Amir H. Safavi-Naeini, 2022. "Ultra-low-power second-order nonlinear optics on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59401-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.