IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59304-1.html
   My bibliography  Save this article

Unified differentiable learning of electric response

Author

Listed:
  • Stefano Falletta

    (Harvard University)

  • Andrea Cepellotti

    (Harvard University)

  • Anders Johansson

    (Harvard University)

  • Chuin Wei Tan

    (Harvard University)

  • Marc L. Descoteaux

    (Harvard University)

  • Albert Musaelian

    (Harvard University)

  • Cameron J. Owen

    (Harvard University
    Harvard University)

  • Boris Kozinsky

    (Harvard University
    Robert Bosch LLC Research and Technology Center)

Abstract

Predicting response of materials to external stimuli is a primary objective of computational materials science. However, current methods are limited to small-scale simulations due to the unfavorable scaling of computational costs. Here, we implement an equivariant machine-learning framework where response properties stem from exact differential relationships between a generalized potential function and applied external fields. Focusing on responses to electric fields, the method predicts electric enthalpy, forces, polarization, Born charges, and polarizability within a unified model enforcing the full set of exact physical constraints, symmetries and conservation laws. Through application to α−SiO2, we demonstrate that our approach can be used for predicting vibrational and dielectric properties of materials, and for conducting large-scale dynamics under arbitrary electric fields at unprecedented accuracy and scale. We apply our method to ferroelectric BaTiO3 and capture the temperature dependence, frequency dependence, and time evolution of the ferroelectric hysteresis, revealing the underlying intrinsic mechanisms of nucleation and growth that govern ferroelectric domain switching.

Suggested Citation

  • Stefano Falletta & Andrea Cepellotti & Anders Johansson & Chuin Wei Tan & Marc L. Descoteaux & Albert Musaelian & Cameron J. Owen & Boris Kozinsky, 2025. "Unified differentiable learning of electric response," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59304-1
    DOI: 10.1038/s41467-025-59304-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59304-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59304-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Xuecheng Shao & Lukas Paetow & Mark E. Tuckerman & Michele Pavanello, 2023. "Machine learning electronic structure methods based on the one-electron reduced density matrix," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Shi Liu & Ilya Grinberg & Andrew M. Rappe, 2016. "Intrinsic ferroelectric switching from first principles," Nature, Nature, vol. 534(7607), pages 360-363, June.
    4. Young-Han Shin & Ilya Grinberg & I-Wei Chen & Andrew M. Rappe, 2007. "Nucleation and growth mechanism of ferroelectric domain-wall motion," Nature, Nature, vol. 449(7164), pages 881-884, October.
    5. Albert Musaelian & Simon Batzner & Anders Johansson & Lixin Sun & Cameron J. Owen & Mordechai Kornbluth & Boris Kozinsky, 2023. "Learning local equivariant representations for large-scale atomistic dynamics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Kit Joll & Philipp Schienbein & Kevin M. Rosso & Jochen Blumberger, 2024. "Machine learning the electric field response of condensed phase systems using perturbed neural network potentials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Yaolong Zhang & Bin Jiang, 2023. "Universal machine learning for the response of atomistic systems to external fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keke Song & Rui Zhao & Jiahui Liu & Yanzhou Wang & Eric Lindgren & Yong Wang & Shunda Chen & Ke Xu & Ting Liang & Penghua Ying & Nan Xu & Zhiqiang Zhao & Jiuyang Shi & Junjie Wang & Shuang Lyu & Zezhu, 2024. "General-purpose machine-learned potential for 16 elemental metals and their alloys," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Juno Nam & Jiayu Peng & Rafael Gómez-Bombarelli, 2025. "Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. J. Thorben Frank & Oliver T. Unke & Klaus-Robert Müller & Stefan Chmiela, 2024. "A Euclidean transformer for fast and stable machine learned force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Bin Han & Kuang Yu, 2025. "Refining potential energy surface through dynamical properties via differentiable molecular simulation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    5. Yusong Wang & Tong Wang & Shaoning Li & Xinheng He & Mingyu Li & Zun Wang & Nanning Zheng & Bin Shao & Tie-Yan Liu, 2024. "Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Ziduo Yang & Yi-Ming Zhao & Xian Wang & Xiaoqing Liu & Xiuying Zhang & Yifan Li & Qiujie Lv & Calvin Yu-Chian Chen & Lei Shen, 2024. "Scalable crystal structure relaxation using an iteration-free deep generative model with uncertainty quantification," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Zechen Tang & He Li & Peize Lin & Xiaoxun Gong & Gan Jin & Lixin He & Hong Jiang & Xinguo Ren & Wenhui Duan & Yong Xu, 2024. "A deep equivariant neural network approach for efficient hybrid density functional calculations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Jonathan P. Mailoa & Xin Li & Shengyu Zhang, 2024. "3T-VASP: fast ab-initio electrochemical reactor via multi-scale gradient energy minimization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Andreas Erlebach & Martin Šípka & Indranil Saha & Petr Nachtigall & Christopher J. Heard & Lukáš Grajciar, 2024. "A reactive neural network framework for water-loaded acidic zeolites," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Yueyang Jia & Qianqian Yang & Yue-Wen Fang & Yue Lu & Maosong Xie & Jianyong Wei & Jianjun Tian & Linxing Zhang & Rui Yang, 2024. "Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Chen, Xin & Zhang, Lin & Huang, JiangBo & Jin, Lei & Song, YongShi & Zheng, XianHua & Zou, ZhiXiong, 2025. "A thermodynamics-consistent machine learning approach for ammonia-water thermal cycles," Energy, Elsevier, vol. 315(C).
    12. Giuseppe Cassone & Fausto Martelli, 2024. "Electrofreezing of liquid water at ambient conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Li Zheng & Konstantinos Karapiperis & Siddhant Kumar & Dennis M. Kochmann, 2023. "Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Daniel Schwalbe-Koda & Sebastien Hamel & Babak Sadigh & Fei Zhou & Vincenzo Lordi, 2025. "Model-free estimation of completeness, uncertainties, and outliers in atomistic machine learning using information theory," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Changwei Zhang & Yang Zhong & Zhi-Guo Tao & Xinming Qin & Honghui Shang & Zhenggang Lan & Oleg V. Prezhdo & Xin-Gao Gong & Weibin Chu & Hongjun Xiang, 2025. "Advancing nonadiabatic molecular dynamics simulations in solids with E(3) equivariant deep neural hamiltonians," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. Kit Joll & Philipp Schienbein & Kevin M. Rosso & Jochen Blumberger, 2024. "Machine learning the electric field response of condensed phase systems using perturbed neural network potentials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Yaolong Zhang & Bin Jiang, 2023. "Universal machine learning for the response of atomistic systems to external fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Wei Lu & Jixian Zhang & Weifeng Huang & Ziqiao Zhang & Xiangyu Jia & Zhenyu Wang & Leilei Shi & Chengtao Li & Peter G. Wolynes & Shuangjia Zheng, 2024. "DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Adil Kabylda & Valentin Vassilev-Galindo & Stefan Chmiela & Igor Poltavsky & Alexandre Tkatchenko, 2023. "Efficient interatomic descriptors for accurate machine learning force fields of extended molecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Junjie Wang & Yong Wang & Haoting Zhang & Ziyang Yang & Zhixin Liang & Jiuyang Shi & Hui-Tian Wang & Dingyu Xing & Jian Sun, 2024. "E(n)-Equivariant cartesian tensor message passing interatomic potential," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59304-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.