IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59219-x.html
   My bibliography  Save this article

Ultrasensitive detection of clinical pathogens through a target-amplification-free collateral-cleavage-enhancing CRISPR-CasΦ tool

Author

Listed:
  • Huiyou Chen

    (Hainan University
    Hainan University
    Hainan University)

  • Fengge Song

    (Hainan University
    Hainan University
    Hainan University)

  • Buhua Wang

    (Hainan University
    Hainan University)

  • Hui Huang

    (People’s Hospital of Haikou)

  • Yanchi Luo

    (Hainan University
    Hainan University)

  • Xiaosheng Han

    (People’s Hospital of Haikou)

  • Hewen He

    (Ltd)

  • Shaolu Lin

    (Ltd)

  • Liudang Wan

    (Ltd)

  • Zhengliang Huang

    (Ltd)

  • Zhaoyong Fu

    (Ltd)

  • Rodrigo Ledesma-Amaro

    (Imperial College London)

  • Dapeng Yin

    (Hainan Center for Disease Control and Prevention)

  • Haimei Mao

    (Products Quality Supervision and Testing Institute of Hainan Province)

  • Linwen He

    (Hainan University)

  • Tao Yang

    (The Chinese University of Hong Kong)

  • Zijing Chen

    (The Chinese University of Hong Kong)

  • Yubin Ma

    (The Chinese University of Hong Kong)

  • Evelyn Y. Xue

    (The Chinese University of Hong Kong)

  • Yi Wan

    (Hainan University
    Hainan University
    Hainan University)

  • Chuanbin Mao

    (The Chinese University of Hong Kong)

Abstract

Clinical pathogen diagnostics detect targets by qPCR (but with low sensitivity) or blood culturing (but time-consuming). Here we leverage a dual-stem-loop DNA amplifier to enhance non-specific collateral enzymatic cleavage of an oligonucleotide linker between a fluophore and its quencher by CRISPR-CasΦ, achieving ultrasensitive target detection. Specifically, the target pathogens are lysed to release DNA, which binds its complementary gRNA in CRISPR-CasΦ to activate the collateral DNA-cleavage capability of CasΦ, enabling CasΦ to cleave the stem-loops in the amplifier. The cleavage product binds its complementary gRNA in another CRISPR-CasΦ to activate more CasΦ. The activated CasΦ collaterally cleaves the linker, releasing the fluophore to recover its fluorescent signal. The cycle of stem-loop-cleavage/CasΦ-activation/fluorescence-recovery amplifies the detection signal. Our target amplification-free collateral-cleavage-enhancing CRISPR-CasΦ method (TCC), with a detection limit of 0.11 copies/μL, demonstrates enhanced sensitivity compared to qPCR. It can detect pathogenic bacteria as low as 1.2 CFU/mL in serum within 40 min.

Suggested Citation

  • Huiyou Chen & Fengge Song & Buhua Wang & Hui Huang & Yanchi Luo & Xiaosheng Han & Hewen He & Shaolu Lin & Liudang Wan & Zhengliang Huang & Zhaoyong Fu & Rodrigo Ledesma-Amaro & Dapeng Yin & Haimei Mao, 2025. "Ultrasensitive detection of clinical pathogens through a target-amplification-free collateral-cleavage-enhancing CRISPR-CasΦ tool," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59219-x
    DOI: 10.1038/s41467-025-59219-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59219-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59219-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Santosh R. Rananaware & Emma K. Vesco & Grace M. Shoemaker & Swapnil S. Anekar & Luke Samuel W. Sandoval & Katelyn S. Meister & Nicolas C. Macaluso & Long T. Nguyen & Piyush K. Jain, 2023. "Programmable RNA detection with CRISPR-Cas12a," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Arturo Carabias & Anders Fuglsang & Piero Temperini & Tillmann Pape & Nicholas Sofos & Stefano Stella & Simon Erlendsson & Guillermo Montoya, 2021. "Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Shy-Shin Chang & Wen-Han Hsieh & Ting-Shou Liu & Si-Huei Lee & Chih-Hung Wang & Hao-Chang Chou & Yee Hui Yeo & Ching-Ping Tseng & Chien-Chang Lee, 2013. "Multiplex PCR System for Rapid Detection of Pathogens in Patients with Presumed Sepsis – A Systemic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    4. Sagar Sridhara & Hemant N. Goswami & Charlisa Whyms & Jonathan H. Dennis & Hong Li, 2021. "Virus detection via programmable Type III-A CRISPR-Cas systems," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Anna Nemudraia & Artem Nemudryi & Murat Buyukyoruk & Andrew M. Scherffius & Trevor Zahl & Tanner Wiegand & Shishir Pandey & Joseph E. Nichols & Laina N. Hall & Aidan McVey & Helen H. Lee & Royce A. Wi, 2022. "Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Jeong Moon & Changchun Liu, 2023. "Asymmetric CRISPR enabling cascade signal amplification for nucleic acid detection by competitive crRNA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Cheri M. Ackerman & Cameron Myhrvold & Sri Gowtham Thakku & Catherine A. Freije & Hayden C. Metsky & David K. Yang & Simon H. Ye & Chloe K. Boehm & Tinna-Sólveig F. Kosoko-Thoroddsen & Jared Kehe & Ti, 2020. "Massively multiplexed nucleic acid detection with Cas13," Nature, Nature, vol. 582(7811), pages 277-282, June.
    8. Kean Hean Ooi & Mengying Mandy Liu & Jie Wen Douglas Tay & Seok Yee Teo & Pornchai Kaewsapsak & Shengyang Jin & Chun Kiat Lee & Jingwen Hou & Sebastian Maurer-Stroh & Weisi Lin & Benedict Yan & Gabrie, 2021. "An engineered CRISPR-Cas12a variant and DNA-RNA hybrid guides enable robust and rapid COVID-19 testing," Nature Communications, Nature, vol. 12(1), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunlei Jiao & Natalia L. Peeck & Jiaqi Yu & Mohammad Ghaem Maghami & Sarah Kono & Daphne Collias & Sandra L. Martinez Diaz & Rachael Larose & Chase L. Beisel, 2024. "TracrRNA reprogramming enables direct PAM-independent detection of RNA with diverse DNA-targeting Cas12 nucleases," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Jeong Moon & Changchun Liu, 2023. "Asymmetric CRISPR enabling cascade signal amplification for nucleic acid detection by competitive crRNA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Santosh R. Rananaware & Emma K. Vesco & Grace M. Shoemaker & Swapnil S. Anekar & Luke Samuel W. Sandoval & Katelyn S. Meister & Nicolas C. Macaluso & Long T. Nguyen & Piyush K. Jain, 2023. "Programmable RNA detection with CRISPR-Cas12a," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Yinqiu Ji & Christopher C. M. Baker & Viorel D. Popescu & Jiaxin Wang & Chunying Wu & Zhengyang Wang & Yuanheng Li & Lin Wang & Chaolang Hua & Zhongxing Yang & Chunyan Yang & Charles C. Y. Xu & Alex D, 2022. "Measuring protected-area effectiveness using vertebrate distributions from leech iDNA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Yuqian Guo & Yaofeng Zhou & Hong Duan & Derong Xu & Min Wei & Yuhao Wu & Ying Xiong & Xirui Chen & Siyuan Wang & Daofeng Liu & Xiaolin Huang & Hongbo Xin & Yonghua Xiong & Ben Zhong Tang, 2024. "CRISPR/Cas-mediated “one to more” lighting-up nucleic acid detection using aggregation-induced emission luminogens," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Sri Gowtham Thakku & Jackson Lirette & Kanagavel Murugesan & Julie Chen & Grant Theron & Niaz Banaei & Paul C. Blainey & James Gomez & Sharon Y. Wong & Deborah T. Hung, 2023. "Genome-wide tiled detection of circulating Mycobacterium tuberculosis cell-free DNA using Cas13," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Andrew Bo Liu & Daniel Lee & Amogh Prabhav Jalihal & William P. Hanage & Michael Springer, 2023. "Quantitatively assessing early detection strategies for mitigating COVID-19 and future pandemics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yin Liu & Xinyi Liu & Dongyi Wei & Lu Dang & Xiaoran Xu & Shisheng Huang & Liwen Li & Sanyun Wu & Jinxian Wu & Xiaoyan Liu & Wenjun Sun & Wanyu Tao & Yongchang Wei & Xingxu Huang & Kui Li & Xinjie Wan, 2024. "CoHIT: a one-pot ultrasensitive ERA-CRISPR system for detecting multiple same-site indels," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Zhichen Xu & Dongjuan Chen & Tao Li & Jiayu Yan & Jiang Zhu & Ting He & Rui Hu & Ying Li & Yunhuang Yang & Maili Liu, 2022. "Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Xiaolong Cheng & Zexu Li & Ruocheng Shan & Zihan Li & Shengnan Wang & Wenchang Zhao & Han Zhang & Lumen Chao & Jian Peng & Teng Fei & Wei Li, 2023. "Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Yichuan Chen & Xinping Wang & Junqi Zhang & Qingyuan Jiang & Bin Qiao & Baoxia He & Wenhao Yin & Jie Qiao & Yi Liu, 2024. "Split crRNA with CRISPR-Cas12a enabling highly sensitive and multiplexed detection of RNA and DNA," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Huang, Fengfeng & Guo, Pengfei & Wang, Yulan, 2022. "Optimal group testing strategy for the mass screening of SARS-CoV-2," Omega, Elsevier, vol. 112(C).
    13. Yiran He & Min Jiang & Zhenlong Liang & Zhaoxu Luo & Jingyi Qin & Ye Shen & Yayun Gu & Xiaodong Ma & Hong Wang & Xin Li & Ying Shi & Yanhua Chen & Kefeng Pu & Jiong Li, 2025. "Lab-in-a-Tip: a multiplex immunoassay platform based on a self-assembled barcoded protein array," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    14. Anna Nemudraia & Artem Nemudryi & Murat Buyukyoruk & Andrew M. Scherffius & Trevor Zahl & Tanner Wiegand & Shishir Pandey & Joseph E. Nichols & Laina N. Hall & Aidan McVey & Helen H. Lee & Royce A. Wi, 2022. "Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59219-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.