IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59188-1.html
   My bibliography  Save this article

Randomly oriented covalent organic framework membrane for selective Li+ sieving from other ions

Author

Listed:
  • Shiwen Bao

    (Qingdao University
    Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences)

  • Zhaoyu Ma

    (Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences)

  • Lei Yu

    (Qingdao University
    Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences)

  • Qi Li

    (Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences)

  • Jiaxiang Xia

    (Qingdao University
    Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences)

  • Song Song

    (Qingdao University
    Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences)

  • Kunyan Sui

    (Qingdao University)

  • Yongye Zhao

    (Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences)

  • Xueli Liu

    (Qingdao University)

  • Jun Gao

    (Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences
    Shandong Energy Institute)

Abstract

Certain biological channels exhibit remarkable selectivity, effectively distinguishing between competing cations. If artificial membranes could achieve similar precision in differentiating competing ions from Li+, it could advance sustainable technologies in lithium extraction. In this study, we present a covalent organic framework (COF) membrane featuring a randomly oriented structure that enables selective separation of major competing ions from Li+. The random orientation results in narrow pores, which impart size-based selectivity among alkaline ions. Additionally, the COF incorporates sulfonic groups that preferentially bind to Na+ and K+, facilitating their transport while retaining Li+. These synergistic mechanisms endow the membrane with a selectivity beyond detection limit for K+ and Na+ over Li+. When driven by an electrical potential, the ion flux through the membrane is enhanced by over an order of magnitude. Notably, the membrane also permits the transport of Mg2+ and Ca2+ while still rejecting Li+, leveraging differences in their ion mobility. This work should advance the design and construction of biomimetic materials for the extraction of valuable species from seawater and other aqueous sources.

Suggested Citation

  • Shiwen Bao & Zhaoyu Ma & Lei Yu & Qi Li & Jiaxiang Xia & Song Song & Kunyan Sui & Yongye Zhao & Xueli Liu & Jun Gao, 2025. "Randomly oriented covalent organic framework membrane for selective Li+ sieving from other ions," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59188-1
    DOI: 10.1038/s41467-025-59188-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59188-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59188-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sixie Yang & Yigang Wang & Hui Pan & Ping He & Haoshen Zhou, 2024. "Lithium extraction from low-quality brines," Nature, Nature, vol. 636(8042), pages 309-321, December.
    2. Peipei Zuo & Chunchun Ye & Zhongren Jiao & Jian Luo & Junkai Fang & Ulrich S. Schubert & Neil B. McKeown & T. Leo Liu & Zhengjin Yang & Tongwen Xu, 2023. "Near-frictionless ion transport within triazine framework membranes," Nature, Nature, vol. 617(7960), pages 299-305, May.
    3. Quan Peng & Ruoyu Wang & Zilin Zhao & Shihong Lin & Ying Liu & Dianyu Dong & Zheng Wang & Yiman He & Yuzhang Zhu & Jian Jin & Lei Jiang, 2024. "Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Yang Li & Qianxun Wu & Xinghua Guo & Meicheng Zhang & Bin Chen & Guanyi Wei & Xing Li & Xiaofeng Li & Shoujian Li & Lijian Ma, 2020. "Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Weiwen Xin & Jingru Fu & Yongchao Qian & Lin Fu & Xiang-Yu Kong & Teng Ben & Lei Jiang & Liping Wen, 2022. "Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Hongjian Wang & Yeming Zhai & Yang Li & Yu Cao & Benbing Shi & Runlai Li & Zingting Zhu & Haifei Jiang & Zheyuan Guo & Meidi Wang & Long Chen & Yawei Liu & Kai-Ge Zhou & Fusheng Pan & Zhongyi Jiang, 2022. "Covalent organic framework membranes for efficient separation of monovalent cations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ri-Jian Mo & Shuang Chen & Li-Qiu Huang & Xin-Lei Ding & Saima Rafique & Xing-Hua Xia & Zhong-Qiu Li, 2024. "Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yue Wang & Yixiao Hu & Jian-Ping Guo & Jun Gao & Bo Song & Lei Jiang, 2024. "A physical derivation of high-flux ion transport in biological channel via quantum ion coherence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Bingbing Yuan & Yuhang Zhang & Pengfei Qi & Dongxiao Yang & Ping Hu & Siheng Zhao & Kaili Zhang & Xiaozhuan Zhang & Meng You & Jiabao Cui & Juhui Jiang & Xiangdong Lou & Q. Jason Niu, 2024. "Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Tianhao Zhu & Yan Kong & Bohui Lyu & Li Cao & Benbing Shi & Xiaoyao Wang & Xiao Pang & Chunyang Fan & Chao Yang & Hong Wu & Zhongyi Jiang, 2023. "3D covalent organic framework membrane with fast and selective ion transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Zheyuan Guo & Wenping Li & Hong Wu & Li Cao & Shuqing Song & Xiaohui Ma & Jiafu Shi & Yanxiong Ren & Tong Huang & Yonghong Li & Zhongyi Jiang, 2025. "Reverse filling approach to mixed matrix covalent organic framework membranes for gas separation," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    6. Yingchun Yan & Zheng Liu & Ting Wan & Weining Li & Zhipeng Qiu & Chunlei Chi & Chao Huangfu & Guanwen Wang & Bin Qi & Youguo Yan & Tong Wei & Zhuangjun Fan, 2023. "Bioinspired design of Na-ion conduction channels in covalent organic frameworks for quasi-solid-state sodium batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Haoyong Yang & Junyi Han & Shengxu Li & Petko St. Petkov & Qunji Xue & Xinliang Feng & Tao Zhang, 2025. "Synthesis of crystalline two-dimensional conjugated polymers through irreversible chemistry under mild conditions," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    8. Niaz Ali Khan & Runnan Zhang & Xiaoyao Wang & Li Cao & Chandra S. Azad & Chunyang Fan & Jinqiu Yuan & Mengying Long & Hong Wu & Mark. A. Olson & Zhongyi Jiang, 2022. "Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Gang Lu & Hubao A & Yuanyuan Zhao & Yan Zhao & Hengyue Xu & Wentao Shang & Xi Chen & Jiawei Sun & Huacheng Zhang & Jun Wu & Bing Dai & Bart Bruggen & Raf Dewil & Alicia Kyoungjin An & Shuang Zheng, 2025. "Nano-confined controllable crystallization in supramolecular polymeric membranes for ultra-selective desalination," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    10. Yichan Hu & Zhiwen Min & Guangyu Zhu & Yuanwei Zhang & Yixian Pei & Cong Chen & Yuanmiao Sun & Guojin Liang & Hui-Ming Cheng, 2025. "Predeposited lead nucleation sites enable a highly reversible zinc electrode for stable zinc-bromine flow batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    11. Mei-Ling Liu & Yu Chen & Chuan Hu & Chun-Xu Zhang & Zheng-Jun Fu & Zhijun Xu & Young Moo Lee & Shi-Peng Sun, 2024. "Microporous membrane with ionized sub-nanochannels enabling highly selective monovalent and divalent anion separation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Qi Zhao & Xu-Qin Ran & Zhu-Ying Yan & Hai-Long Qian & Xiu-Ping Yan, 2025. "Histamine-modulated wettability switching in G-protein-coupled receptor inspired nanochannel for potential drug screening and biosensing," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    13. Yang Xie & Wenjing Wang & Zeyue Zhang & Jian Li & Bo Gui & Junliang Sun & Daqiang Yuan & Cheng Wang, 2024. "Fine-tuning the pore environment of ultramicroporous three-dimensional covalent organic frameworks for efficient one-step ethylene purification," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Weiwen Xin & Yanglansen Cui & Yongchao Qian & Tianchi Liu & Xiang-Yu Kong & Haoyang Ling & Weipeng Chen & Zhehua Zhang & Yuhao Hu & Lei Jiang & Liping Wen, 2024. "High-efficiency dysprosium-ion extraction enabled by a biomimetic nanofluidic channel," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Weipeng Xian & Xiuhui Zuo & Changjia Zhu & Qing Guo & Qing-Wei Meng & Xincheng Zhu & Sai Wang & Shengqian Ma & Qi Sun, 2022. "Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Qinghua Liu & Ming Liu & Zhe Zhang & Congcong Yin & Jianghai Long & Mingjie Wei & Yong Wang, 2024. "Covalent organic framework membranes with vertically aligned nanorods for efficient separation of rare metal ions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Hai Liu & Xinxi Huang & Yang Wang & Baian Kuang & Wanbin Li, 2024. "Nanowire-assisted electrochemical perforation of graphene oxide nanosheets for molecular separation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Junkai Fang & Guozhen Zhang & Marc-Antoni Goulet & Peipei Zuo & Yu Zhou & Hui Li & Jun Jiang & Michael D. Guiver & Zhengjin Yang & Tongwen Xu, 2025. "High selectivity framework polymer membranes chemically tuned towards fast anion conduction," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    19. Shijie Yin & Jianguo Li & Zhuozhi Lai & Qing-Wei Meng & Weipeng Xian & Zhifeng Dai & Sai Wang & Li Zhang & Yubing Xiong & Shengqian Ma & Qi Sun, 2024. "Giant gateable thermoelectric conversion by tuning the ion linkage interactions in covalent organic framework membranes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Ningning He & Yingdi Zou & Cheng Chen & Minghao Tan & Yingdan Zhang & Xiaofeng Li & Zhimin Jia & Jie Zhang & Honghan Long & Haiyue Peng & Kaifu Yu & Bo Jiang & Ziqian Han & Ning Liu & Yang Li & Lijian, 2024. "Constructing ordered and tunable extrinsic porosity in covalent organic frameworks via water-mediated soft-template strategy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59188-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.