IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58798-z.html
   My bibliography  Save this article

A large model for non-invasive and personalized management of breast cancer from multiparametric MRI

Author

Listed:
  • Luyang Luo

    (The Hong Kong University of Science and Technology
    Harvard University)

  • Mingxiang Wu

    (Shenzhen People’s Hospital)

  • Mei Li

    (PLA Middle Military Command General Hospital)

  • Yi Xin

    (The Hong Kong University of Science and Technology)

  • Qiong Wang

    (Chinese Academy of Sciences)

  • Varut Vardhanabhuti

    (Li Ka Shing Faculty of Medicine, The University of Hong Kong)

  • Winnie CW Chu

    (The Chinese University of Hong Kong)

  • Zhenhui Li

    (the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center)

  • Juan Zhou

    (5th Medical Center of Chinese PLA General Hospital
    Southern Medical University)

  • Pranav Rajpurkar

    (Harvard University)

  • Hao Chen

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology)

Abstract

Breast Magnetic Resonance Imaging (MRI) demonstrates the highest sensitivity for breast cancer detection among imaging modalities and is standard practice for high-risk women. Interpreting the multi-sequence MRI is time-consuming and prone to subjective variation. We develop a large mixture-of-modality-experts model (MOME) that integrates multiparametric MRI information within a unified structure, leveraging breast MRI scans from 5205 female patients in China for model development and validation. MOME matches four senior radiologists’ performance in identifying breast cancer and outperforms a junior radiologist. The model is able to reduce unnecessary biopsies in Breast Imaging-Reporting and Data System (BI-RADS) 4 patients, classify triple-negative breast cancer, and predict pathological complete response to neoadjuvant chemotherapy. MOME further supports inference with missing modalities and provides decision explanations by highlighting lesions and measuring modality contributions. To summarize, MOME exemplifies an accurate and robust multimodal model for noninvasive, personalized management of breast cancer patients via multiparametric MRI.

Suggested Citation

  • Luyang Luo & Mingxiang Wu & Mei Li & Yi Xin & Qiong Wang & Varut Vardhanabhuti & Winnie CW Chu & Zhenhui Li & Juan Zhou & Pranav Rajpurkar & Hao Chen, 2025. "A large model for non-invasive and personalized management of breast cancer from multiparametric MRI," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58798-z
    DOI: 10.1038/s41467-025-58798-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58798-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58798-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Vickers & Elena B. Elkin, 2006. "Decision Curve Analysis: A Novel Method for Evaluating Prediction Models," Medical Decision Making, , vol. 26(6), pages 565-574, November.
    2. Michael Moor & Oishi Banerjee & Zahra Shakeri Hossein Abad & Harlan M. Krumholz & Jure Leskovec & Eric J. Topol & Pranav Rajpurkar, 2023. "Foundation models for generalist medical artificial intelligence," Nature, Nature, vol. 616(7956), pages 259-265, April.
    3. Hanwen Xu & Naoto Usuyama & Jaspreet Bagga & Sheng Zhang & Rajesh Rao & Tristan Naumann & Cliff Wong & Zelalem Gero & Javier González & Yu Gu & Yanbo Xu & Mu Wei & Wenhui Wang & Shuming Ma & Furu Wei , 2024. "A whole-slide foundation model for digital pathology from real-world data," Nature, Nature, vol. 630(8015), pages 181-188, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Manuel Zambrano Chaves & Shih-Cheng Huang & Yanbo Xu & Hanwen Xu & Naoto Usuyama & Sheng Zhang & Fei Wang & Yujia Xie & Mahmoud Khademi & Ziyi Yang & Hany Awadalla & Julia Gong & Houdong Hu & Jia, 2025. "A clinically accessible small multimodal radiology model and evaluation metric for chest X-ray findings," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    2. Ja Hyeon Ku & Myong Kim & Seok-Soo Byun & Hyeon Jeong & Cheol Kwak & Hyeon Hoe Kim & Sang Eun Lee, 2015. "External Validation of Models for Prediction of Lymph Node Metastasis in Urothelial Carcinoma of the Bladder," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    3. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Rawan Omar & Sooyun Caroline Tavolacci & Lathan Liou & Dillan F Villavisanis & Yoav Y Broza & Hossam Haick, 2024. "Real-time prognostic biomarkers for predicting in-hospital mortality and cardiac complications in COVID-19 patients," PLOS Global Public Health, Public Library of Science, vol. 4(3), pages 1-17, March.
    5. Pengcheng Qiu & Chaoyi Wu & Xiaoman Zhang & Weixiong Lin & Haicheng Wang & Ya Zhang & Yanfeng Wang & Weidi Xie, 2024. "Towards building multilingual language model for medicine," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Yiwang Zhou & Peter X.K. Song & Haoda Fu, 2021. "Net benefit index: Assessing the influence of a biomarker for individualized treatment rules," Biometrics, The International Biometric Society, vol. 77(4), pages 1254-1264, December.
    7. Konstantina Chalkou & Andrew J. Vickers & Fabio Pellegrini & Andrea Manca & Georgia Salanti, 2023. "Decision Curve Analysis for Personalized Treatment Choice between Multiple Options," Medical Decision Making, , vol. 43(3), pages 337-349, April.
    8. Adam Maidman & Lan Wang, 2018. "New semiparametric method for predicting high‐cost patients," Biometrics, The International Biometric Society, vol. 74(3), pages 1104-1111, September.
    9. repec:plo:pmed00:1002019 is not listed on IDEAS
    10. Mehmet Eren Ahsen & Mehmet U. S. Ayvaci & Radha Mookerjee & Gustavo Stolovitzky, 2025. "Economics of AI and human task sharing for decision making in screening mammography," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Dexin Chen & Meiting Fu & Liangjie Chi & Liyan Lin & Jiaxin Cheng & Weisong Xue & Chenyan Long & Wei Jiang & Xiaoyu Dong & Jian Sui & Dajia Lin & Jianping Lu & Shuangmu Zhuo & Side Liu & Guoxin Li & G, 2022. "Prognostic and predictive value of a pathomics signature in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Jing Sun & Yue Liu & Jianhui Zhao & Bin Lu & Siyun Zhou & Wei Lu & Jingsun Wei & Yeting Hu & Xiangxing Kong & Junshun Gao & Hong Guan & Junli Gao & Qian Xiao & Xue Li, 2024. "Plasma proteomic and polygenic profiling improve risk stratification and personalized screening for colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Maksim Makarenko & Arturo Burguete-Lopez & Qizhou Wang & Silvio Giancola & Bernard Ghanem & Luca Passone & Andrea Fratalocchi, 2024. "Hardware-accelerated integrated optoelectronic platform towards real-time high-resolution hyperspectral video understanding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Anirudh Tomer & Daan Nieboer & Monique J. Roobol & Ewout W. Steyerberg & Dimitris Rizopoulos, 2019. "Personalized schedules for surveillance of low‐risk prostate cancer patients," Biometrics, The International Biometric Society, vol. 75(1), pages 153-162, March.
    15. Bernd Lütkenhöner & Türker Basel, 2013. "Predictive Modeling for Diagnostic Tests with High Specificity, but Low Sensitivity: A Study of the Glycerol Test in Patients with Suspected Menière’s Disease," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-12, November.
    16. Shamil D. Cooray & Lihini A. Wijeyaratne & Georgia Soldatos & John Allotey & Jacqueline A. Boyle & Helena J. Teede, 2020. "The Unrealised Potential for Predicting Pregnancy Complications in Women with Gestational Diabetes: A Systematic Review and Critical Appraisal," IJERPH, MDPI, vol. 17(9), pages 1-20, April.
    17. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Minta Thomas & Yu-Ru Su & Elisabeth A. Rosenthal & Lori C. Sakoda & Stephanie L. Schmit & Maria N. Timofeeva & Zhishan Chen & Ceres Fernandez-Rozadilla & Philip J. Law & Neil Murphy & Robert Carreras-, 2023. "Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Khushal Arjan & Lui G Forni & Richard M Venn & David Hunt & Luke Eliot Hodgson, 2021. "Clinical decision-making in older adults following emergency admission to hospital. Derivation and validation of a risk stratification score: OPERA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-12, March.
    20. Alex Thompson & Scott Devine & Mike Kattan & Andrew Muir, 2014. "Prediction of Treatment Week Eight Response & Sustained Virologic Response in Patients Treated with Boceprevir Plus Peginterferon Alfa and Ribavirin," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-8, August.
    21. Zhilong Weng & Alexander Seper & Alexey Pryalukhin & Fabian Mairinger & Claudia Wickenhauser & Marcus Bauer & Lennert Glamann & Hendrik Bläker & Thomas Lingscheidt & Wolfgang Hulla & Danny Jonigk & Si, 2024. "GrandQC: A comprehensive solution to quality control problem in digital pathology," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58798-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.