Author
Listed:
- Luyang Luo
(The Hong Kong University of Science and Technology
Harvard University)
- Mingxiang Wu
(Shenzhen People’s Hospital)
- Mei Li
(PLA Middle Military Command General Hospital)
- Yi Xin
(The Hong Kong University of Science and Technology)
- Qiong Wang
(Chinese Academy of Sciences)
- Varut Vardhanabhuti
(Li Ka Shing Faculty of Medicine, The University of Hong Kong)
- Winnie CW Chu
(The Chinese University of Hong Kong)
- Zhenhui Li
(the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center)
- Juan Zhou
(5th Medical Center of Chinese PLA General Hospital
Southern Medical University)
- Pranav Rajpurkar
(Harvard University)
- Hao Chen
(The Hong Kong University of Science and Technology
The Hong Kong University of Science and Technology
The Hong Kong University of Science and Technology
The Hong Kong University of Science and Technology)
Abstract
Breast Magnetic Resonance Imaging (MRI) demonstrates the highest sensitivity for breast cancer detection among imaging modalities and is standard practice for high-risk women. Interpreting the multi-sequence MRI is time-consuming and prone to subjective variation. We develop a large mixture-of-modality-experts model (MOME) that integrates multiparametric MRI information within a unified structure, leveraging breast MRI scans from 5205 female patients in China for model development and validation. MOME matches four senior radiologists’ performance in identifying breast cancer and outperforms a junior radiologist. The model is able to reduce unnecessary biopsies in Breast Imaging-Reporting and Data System (BI-RADS) 4 patients, classify triple-negative breast cancer, and predict pathological complete response to neoadjuvant chemotherapy. MOME further supports inference with missing modalities and provides decision explanations by highlighting lesions and measuring modality contributions. To summarize, MOME exemplifies an accurate and robust multimodal model for noninvasive, personalized management of breast cancer patients via multiparametric MRI.
Suggested Citation
Luyang Luo & Mingxiang Wu & Mei Li & Yi Xin & Qiong Wang & Varut Vardhanabhuti & Winnie CW Chu & Zhenhui Li & Juan Zhou & Pranav Rajpurkar & Hao Chen, 2025.
"A large model for non-invasive and personalized management of breast cancer from multiparametric MRI,"
Nature Communications, Nature, vol. 16(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58798-z
DOI: 10.1038/s41467-025-58798-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58798-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.