IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58582-z.html
   My bibliography  Save this article

Frequency modulation on magnons in synthetic dimensions

Author

Listed:
  • Meng Xu

    (Fudan University)

  • Chensong Hua

    (Fudan University)

  • Yan Chen

    (Fudan University
    Fudan University)

  • Weichao Yu

    (Fudan University
    Fudan University
    Fudan University)

Abstract

Magnons are promising candidates for next-generation computing architectures, offering the ability to manipulate their amplitude and phase for information encoding. However, the frequency degree of freedom remains largely unexploited due to the complexity of nonlinear process. In this work, we introduce the concept of synthetic frequency dimension into magnonics, treating the eigenfrequency of inherent modes as an additional degree of freedom. This approach enables the effective description of the temporal evolution of a magnon state using an effective tight-binding model, analogous to a charged particle hopping in a modulated lattice. A magnonic ring resonator is investigated as an example, and several intriguing phenomena are predicted, including Bloch oscillations and a leverage effect during unidirectional frequency shifts, all of which are verified through micromagnetic simulations. Notably, our strategy operates in the linear spin-wave regime, excluding the involvement of multi-magnon scattering and high-power generation. This work expands the toolkit for designing magnonic devices based on frequency modulation and paves the way for a new paradigm called magnonics in synthetic dimensions.

Suggested Citation

  • Meng Xu & Chensong Hua & Yan Chen & Weichao Yu, 2025. "Frequency modulation on magnons in synthetic dimensions," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58582-z
    DOI: 10.1038/s41467-025-58582-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58582-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58582-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrii V. Chumak & Alexander A. Serga & Burkard Hillebrands, 2014. "Magnon transistor for all-magnon data processing," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    2. Jin Lan & Weichao Yu & Jiang Xiao, 2017. "Antiferromagnetic domain wall as spin wave polarizer and retarder," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    3. Qi Wang & Roman Verba & Kristýna Davídková & Björn Heinz & Shixian Tian & Yiheng Rao & Mengying Guo & Xueyu Guo & Carsten Dubs & Philipp Pirro & Andrii V. Chumak, 2024. "All-magnonic repeater based on bistability," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Avik Dutt & Momchil Minkov & Qian Lin & Luqi Yuan & David A. B. Miller & Shanhui Fan, 2019. "Experimental band structure spectroscopy along a synthetic dimension," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Reza Maram & James van Howe & Deming Kong & Francesco Da Ros & Pengyu Guan & Michael Galili & Roberto Morandotti & Leif Katsuo Oxenløwe & José Azaña, 2020. "Frequency-domain ultrafast passive logic: NOT and XNOR gates," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaohui Dong & Xiaoxiong Wu & Yiwen Yang & Penghong Yu & Xianfeng Chen & Luqi Yuan, 2024. "Temporal multilayer structures in discrete physical systems towards arbitrary-dimensional non-Abelian Aharonov-Bohm interferences," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. G. Poelchen & J. Hellwig & M. Peters & D. Yu. Usachov & K. Kliemt & C. Laubschat & P. M. Echenique & E. V. Chulkov & C. Krellner & S. S. P. Parkin & D. V. Vyalikh & A. Ernst & K. Kummer, 2023. "Long-lived spin waves in a metallic antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Yoonseok Hwang & Jun-Won Rhim & Bohm-Jung Yang, 2021. "Geometric characterization of anomalous Landau levels of isolated flat bands," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Yan Li & Zhitao Zhang & Chen Liu & Dongxing Zheng & Bin Fang & Chenhui Zhang & Aitian Chen & Yinchang Ma & Chunmei Wang & Haoliang Liu & Ka Shen & Aurélien Manchon & John Q. Xiao & Ziqiang Qiu & Can-M, 2024. "Reconfigurable spin current transmission and magnon–magnon coupling in hybrid ferrimagnetic insulators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Saket Kaushal & A. Aadhi & Anthony Roberge & Roberto Morandotti & Raman Kashyap & José Azaña, 2023. "All-fibre phase filters with 1-GHz resolution for high-speed passive optical logic processing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Yoichi Shiota & Tomohiro Taniguchi & Daiju Hayashi & Hideki Narita & Shutaro Karube & Ryusuke Hisatomi & Takahiro Moriyama & Teruo Ono, 2024. "Handedness manipulation of propagating antiferromagnetic magnons," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Shulin Wang & Chengzhi Qin & Weiwei Liu & Bing Wang & Feng Zhou & Han Ye & Lange Zhao & Jianji Dong & Xinliang Zhang & Stefano Longhi & Peixiang Lu, 2022. "High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Yahui Liu & Zhengmeng Xu & Lin Liu & Kai Zhang & Yang Meng & Yuanwei Sun & Peng Gao & Hong-Wu Zhao & Qian Niu & J. Li, 2022. "Switching magnon chirality in artificial ferrimagnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Qi Wang & Roman Verba & Kristýna Davídková & Björn Heinz & Shixian Tian & Yiheng Rao & Mengying Guo & Xueyu Guo & Carsten Dubs & Philipp Pirro & Andrii V. Chumak, 2024. "All-magnonic repeater based on bistability," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Avik Dutt & Luqi Yuan & Ki Youl Yang & Kai Wang & Siddharth Buddhiraju & Jelena Vučković & Shanhui Fan, 2022. "Creating boundaries along a synthetic frequency dimension," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Mu Yang & Hao-Qing Zhang & Yu-Wei Liao & Zheng-Hao Liu & Zheng-Wei Zhou & Xing-Xiang Zhou & Jin-Shi Xu & Yong-Jian Han & Chuan-Feng Li & Guang-Can Guo, 2022. "Topological band structure via twisted photons in a degenerate cavity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58582-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.