IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46330-8.html
   My bibliography  Save this article

Reconfigurable spin current transmission and magnon–magnon coupling in hybrid ferrimagnetic insulators

Author

Listed:
  • Yan Li

    (King Abdullah University of Science and Technology (KAUST))

  • Zhitao Zhang

    (Harbin Institute of Technology (Shenzhen))

  • Chen Liu

    (King Abdullah University of Science and Technology (KAUST))

  • Dongxing Zheng

    (King Abdullah University of Science and Technology (KAUST))

  • Bin Fang

    (King Abdullah University of Science and Technology (KAUST))

  • Chenhui Zhang

    (King Abdullah University of Science and Technology (KAUST))

  • Aitian Chen

    (King Abdullah University of Science and Technology (KAUST))

  • Yinchang Ma

    (King Abdullah University of Science and Technology (KAUST))

  • Chunmei Wang

    (Harbin Institute of Technology (Shenzhen))

  • Haoliang Liu

    (Harbin Institute of Technology (Shenzhen))

  • Ka Shen

    (Beijing Normal University)

  • Aurélien Manchon

    (Aix-Marseille Univ, CNRS, CINaM)

  • John Q. Xiao

    (University of Delaware, Newark)

  • Ziqiang Qiu

    (University of California at Berkeley)

  • Can-Ming Hu

    (University of Manitoba)

  • Xixiang Zhang

    (King Abdullah University of Science and Technology (KAUST))

Abstract

Coherent spin waves possess immense potential in wave-based information computation, storage, and transmission with high fidelity and ultra-low energy consumption. However, despite their seminal importance for magnonic devices, there is a paucity of both structural prototypes and theoretical frameworks that regulate the spin current transmission and magnon hybridization mediated by coherent spin waves. Here, we demonstrate reconfigurable coherent spin current transmission, as well as magnon–magnon coupling, in a hybrid ferrimagnetic heterostructure comprising epitaxial Gd3Fe5O12 and Y3Fe5O12 insulators. By adjusting the compensated moment in Gd3Fe5O12, magnon–magnon coupling was achieved and engineered with pronounced anticrossings between two Kittel modes, accompanied by divergent dissipative coupling approaching the magnetic compensation temperature of Gd3Fe5O12 (TM,GdIG), which were modeled by coherent spin pumping. Remarkably, we further identified, both experimentally and theoretically, a drastic variation in the coherent spin wave-mediated spin current across TM,GdIG, which manifested as a strong dependence on the relative alignment of magnetic moments. Our findings provide significant fundamental insight into the reconfiguration of coherent spin waves and offer a new route towards constructing artificial magnonic architectures.

Suggested Citation

  • Yan Li & Zhitao Zhang & Chen Liu & Dongxing Zheng & Bin Fang & Chenhui Zhang & Aitian Chen & Yinchang Ma & Chunmei Wang & Haoliang Liu & Ka Shen & Aurélien Manchon & John Q. Xiao & Ziqiang Qiu & Can-M, 2024. "Reconfigurable spin current transmission and magnon–magnon coupling in hybrid ferrimagnetic insulators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46330-8
    DOI: 10.1038/s41467-024-46330-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46330-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46330-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrii V. Chumak & Alexander A. Serga & Burkard Hillebrands, 2014. "Magnon transistor for all-magnon data processing," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    2. Q. Li & M. Yang & C. Klewe & P. Shafer & A. T. N’Diaye & D. Hou & T. Y. Wang & N. Gao & E. Saitoh & C. Hwang & R. J. Hicken & J. Li & E. Arenholz & Z. Q. Qiu, 2019. "Coherent ac spin current transmission across an antiferromagnetic CoO insulator," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    3. Y. Kajiwara & K. Harii & S. Takahashi & J. Ohe & K. Uchida & M. Mizuguchi & H. Umezawa & H. Kawai & K. Ando & K. Takanashi & S. Maekawa & E. Saitoh, 2010. "Transmission of electrical signals by spin-wave interconversion in a magnetic insulator," Nature, Nature, vol. 464(7286), pages 262-266, March.
    4. K. Uchida & S. Takahashi & K. Harii & J. Ieda & W. Koshibae & K. Ando & S. Maekawa & E. Saitoh, 2008. "Observation of the spin Seebeck effect," Nature, Nature, vol. 455(7214), pages 778-781, October.
    5. Junxue Li & C. Blake Wilson & Ran Cheng & Mark Lohmann & Marzieh Kavand & Wei Yuan & Mohammed Aldosary & Nikolay Agladze & Peng Wei & Mark S. Sherwin & Jing Shi, 2020. "Spin current from sub-terahertz-generated antiferromagnetic magnons," Nature, Nature, vol. 578(7793), pages 70-74, February.
    6. Joel Cramer & Felix Fuhrmann & Ulrike Ritzmann & Vanessa Gall & Tomohiko Niizeki & Rafael Ramos & Zhiyong Qiu & Dazhi Hou & Takashi Kikkawa & Jairo Sinova & Ulrich Nowak & Eiji Saitoh & Mathias Kläui, 2018. "Magnon detection using a ferroic collinear multilayer spin valve," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    7. Andrew H. Comstock & Chung-Tao Chou & Zhiyu Wang & Tonghui Wang & Ruyi Song & Joseph Sklenar & Aram Amassian & Wei Zhang & Haipeng Lu & Luqiao Liu & Matthew C. Beard & Dali Sun, 2023. "Hybrid magnonics in hybrid perovskite antiferromagnets," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Shehzaad Kaka & Matthew R. Pufall & William H. Rippard & Thomas J. Silva & Stephen E. Russek & Jordan A. Katine, 2005. "Mutual phase-locking of microwave spin torque nano-oscillators," Nature, Nature, vol. 437(7057), pages 389-392, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongru Wang & Jing Meng & Jianjun Lin & Bin Xu & Hai Ma & Yucheng Kan & Rui Chen & Lujun Huang & Ye Chen & Fangyu Yue & Chun-Gang Duan & Junhao Chu & Lin Sun, 2024. "Origin of the light-induced spin currents in heavy metal/magnetic insulator bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. G. Poelchen & J. Hellwig & M. Peters & D. Yu. Usachov & K. Kliemt & C. Laubschat & P. M. Echenique & E. V. Chulkov & C. Krellner & S. S. P. Parkin & D. V. Vyalikh & A. Ernst & K. Kummer, 2023. "Long-lived spin waves in a metallic antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Guangyi Chen & Shaomian Qi & Jianqiao Liu & Di Chen & Jiongjie Wang & Shili Yan & Yu Zhang & Shimin Cao & Ming Lu & Shibing Tian & Kangyao Chen & Peng Yu & Zheng Liu & X. C. Xie & Jiang Xiao & Ryuichi, 2021. "Electrically switchable van der Waals magnon valves," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    4. Jianyu Zhang & Mingfeng Chen & Jilei Chen & Kei Yamamoto & Hanchen Wang & Mohammad Hamdi & Yuanwei Sun & Kai Wagner & Wenqing He & Yu Zhang & Ji Ma & Peng Gao & Xiufeng Han & Dapeng Yu & Patrick Malet, 2021. "Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Jeong-Mok Kim & Seok-Jong Kim & Min-Gu Kang & Jong-Guk Choi & Soogil Lee & Jaehyeon Park & Cao Phuoc & Kyoung-Whan Kim & Kab-Jin Kim & Jong-Ryul Jeong & Kyung-Jin Lee & Byong-Guk Park, 2023. "Enhanced spin Seebeck effect via oxygen manipulation," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    6. Igor Ilyakov & Arne Brataas & Thales V. A. G. Oliveira & Alexey Ponomaryov & Jan-Christoph Deinert & Olav Hellwig & Jürgen Faßbender & Jürgen Lindner & Ruslan Salikhov & Sergey Kovalev, 2023. "Efficient ultrafast field-driven spin current generation for spintronic terahertz frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yong Xu & Fan Zhang & Albert Fert & Henri-Yves Jaffres & Yongshan Liu & Renyou Xu & Yuhao Jiang & Houyi Cheng & Weisheng Zhao, 2024. "Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Ando Junior, O.H. & Maran, A.L.O. & Henao, N.C., 2018. "A review of the development and applications of thermoelectric microgenerators for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 376-393.
    10. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Yuan, Dongdong & Jiang, Wei & Sha, Aimin & Xiao, Jingjing & Wu, Wangjie & Wang, Teng, 2023. "Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect," Applied Energy, Elsevier, vol. 331(C).
    12. Farhan Nur Kholid & Dominik Hamara & Ahmad Faisal Bin Hamdan & Guillermo Nava Antonio & Richard Bowen & Dorothée Petit & Russell Cowburn & Roman V. Pisarev & Davide Bossini & Joseph Barker & Chiara Ci, 2023. "The importance of the interface for picosecond spin pumping in antiferromagnet-heavy metal heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. E. Rongione & O. Gueckstock & M. Mattern & O. Gomonay & H. Meer & C. Schmitt & R. Ramos & T. Kikkawa & M. Mičica & E. Saitoh & J. Sinova & H. Jaffrès & J. Mangeney & S. T. B. Goennenwein & S. Geprägs , 2023. "Emission of coherent THz magnons in an antiferromagnetic insulator triggered by ultrafast spin–phonon interactions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Pavlo Makushko & Tobias Kosub & Oleksandr V. Pylypovskyi & Natascha Hedrich & Jiang Li & Alexej Pashkin & Stanislav Avdoshenko & René Hübner & Fabian Ganss & Daniel Wolf & Axel Lubk & Maciej Oskar Lie, 2022. "Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Isidore Komofor Ngongiah & Balamurali Ramakrishnan & Hayder Natiq & Justin Roger Mboupda Pone & Gaetan Fautso Kuiate, 2022. "Josephson junction based on high critical-temperature superconductors: analysis, microcontroller implementation, and suppression of coexisting and chaotic attractors," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-13, September.
    16. Yongjian Zhou & Liyang Liao & Tingwen Guo & Hua Bai & Mingkun Zhao & Caihua Wan & Lin Huang & Lei Han & Leilei Qiao & Yunfeng You & Chong Chen & Ruyi Chen & Zhiyuan Zhou & Xiufeng Han & Feng Pan & Che, 2022. "Orthogonal interlayer coupling in an all-antiferromagnetic junction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Lin Huang & Liyang Liao & Hongsong Qiu & Xianzhe Chen & Hua Bai & Lei Han & Yongjian Zhou & Yichen Su & Zhiyuan Zhou & Feng Pan & Biaobing Jin & Cheng Song, 2024. "Antiferromagnetic magnonic charge current generation via ultrafast optical excitation," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    18. Man Yang & Liang Sun & Yulun Zeng & Jun Cheng & Kang He & Xi Yang & Ziqiang Wang & Longqian Yu & Heng Niu & Tongzhou Ji & Gong Chen & Bingfeng Miao & Xiangrong Wang & Haifeng Ding, 2024. "Highly efficient field-free switching of perpendicular yttrium iron garnet with collinear spin current," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Zhenya Zhang & Fumiya Sekiguchi & Takahiro Moriyama & Shunsuke C. Furuya & Masahiro Sato & Takuya Satoh & Yu Mukai & Koichiro Tanaka & Takafumi Yamamoto & Hiroshi Kageyama & Yoshihiko Kanemitsu & Hide, 2023. "Generation of third-harmonic spin oscillation from strong spin precession induced by terahertz magnetic near fields," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Oswaldo Hideo Ando Junior & Nelson H. Calderon & Samara Silva De Souza, 2018. "Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery," Energies, MDPI, vol. 11(6), pages 1-13, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46330-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.