IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58486-y.html
   My bibliography  Save this article

V activated electro-epoxidation catalyst in membrane electrode assembly system for the production of propylene oxide

Author

Listed:
  • Yan Lin

    (China University of Petroleum (East China)
    Tsinghua University)

  • Hui Li

    (China University of Petroleum (East China))

  • Xiaodong Miao

    (China University of Petroleum (East China))

  • Yunayuan Sun

    (China University of Petroleum (East China))

  • Hao Ren

    (China University of Petroleum (East China))

  • Xifeng Yu

    (China University of Petroleum (East China))

  • Wangyang Cui

    (China University of Petroleum (East China))

  • Mingbo Wu

    (China University of Petroleum (East China))

  • Zhongtao Li

    (China University of Petroleum (East China))

Abstract

Direct electro-epoxidation of propylene (D-EOPO) with a membrane electrode assembly (MEA) system represents a sustainable approach for producing propylene oxide, which can reduce ohmic losses and simplify product separation. To address the challenges of selectivity and activity, we develop an Ag/V catalyst and integrate it into the “liquid-free” MEA reactor for continues D-EOPO. The V in the catalyst facilitates the formation of Ag-O active centers, thereby reducing the generation energy of *O radicals. Meanwhile, V doping also results in a downshift of the d-band center of the Ag sites. Consequently, the formation of the crucial intermediate (*OC3H6) is significantly accelerated through the coupling *O with adsorbed propylene, thereby markedly improving propylene oxide (PO) production. The MEA reactor, integrated with the developed Ag/V catalyst, can maintain a stable production rate of PO at 227 μmol/h over a period of 78 hours. Thus, the “liquid-free” electro-epoxidation protocol developed here exhibits greater industrial applicability.

Suggested Citation

  • Yan Lin & Hui Li & Xiaodong Miao & Yunayuan Sun & Hao Ren & Xifeng Yu & Wangyang Cui & Mingbo Wu & Zhongtao Li, 2025. "V activated electro-epoxidation catalyst in membrane electrode assembly system for the production of propylene oxide," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58486-y
    DOI: 10.1038/s41467-025-58486-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58486-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58486-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shenyang Huang & Guowei Zhang & Fengren Fan & Chaoyu Song & Fanjie Wang & Qiaoxia Xing & Chong Wang & Hua Wu & Hugen Yan, 2019. "Strain-tunable van der Waals interactions in few-layer black phosphorus," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Wei Xiong & Xiang-Kui Gu & Zhenhua Zhang & Peng Chai & Yijing Zang & Zongyou Yu & Dan Li & Hui Zhang & Zhi Liu & Weixin Huang, 2021. "Author Correction: Fine cubic Cu2O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    3. Wei Xiong & Xiang-Kui Gu & Zhenhua Zhang & Peng Chai & Yijing Zang & Zongyou Yu & Dan Li & Hui Zhang & Zhi Liu & Weixin Huang, 2021. "Fine cubic Cu2O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Jingwen Ke & Jiankang Zhao & Mingfang Chi & Menglin Wang & Xiangdong Kong & Qixuan Chang & Weiran Zhou & Chengxuan Long & Jie Zeng & Zhigang Geng, 2022. "Facet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Christopher P. Gordon & Hauke Engler & Amadeus Samuel Tragl & Milivoj Plodinec & Thomas Lunkenbein & Albrecht Berkessel & Joaquim Henrique Teles & Andrei-Nicolae Parvulescu & Christophe Copéret, 2020. "Efficient epoxidation over dinuclear sites in titanium silicalite-1," Nature, Nature, vol. 586(7831), pages 708-713, October.
    6. Jiantao Fan & Ming Chen & Zhiliang Zhao & Zhen Zhang & Siyu Ye & Shaoyi Xu & Haijiang Wang & Hui Li, 2021. "Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells," Nature Energy, Nature, vol. 6(5), pages 475-486, May.
    7. Zhuo Xing & Lin Hu & Donald S. Ripatti & Xun Hu & Xiaofeng Feng, 2021. "Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingfang Chi & Jingwen Ke & Yan Liu & Miaojin Wei & Hongliang Li & Jiankang Zhao & Yuxuan Zhou & Zhenhua Gu & Zhigang Geng & Jie Zeng, 2024. "Spatial decoupling of bromide-mediated process boosts propylene oxide electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Jingwen Ke & Jiankang Zhao & Mingfang Chi & Menglin Wang & Xiangdong Kong & Qixuan Chang & Weiran Zhou & Chengxuan Long & Jie Zeng & Zhigang Geng, 2022. "Facet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Hao Dong & Ran Luo & Gong Zhang & Lulu Li & Chaoxi Wang & Guodong Sun & Hongyi Wang & Jiachang Liu & Tuo Wang & Zhi-Jian Zhao & Peng Zhang & Jinlong Gong, 2025. "Electrochemical epoxidation enhanced by C2H4 activation and hydroxyl generation at the Ag/SnO2 interface," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Shouheng Chen & Zihan Liang & Jinshui Miao & Xiang-Long Yu & Shuo Wang & Yule Zhang & Han Wang & Yun Wang & Chun Cheng & Gen Long & Taihong Wang & Lin Wang & Han Zhang & Xiaolong Chen, 2024. "Infrared optoelectronics in twisted black phosphorus," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Menglu Cai & Siyun Dai & Jun Xuan & Yiming Mo, 2025. "Bromide-mediated membraneless electrosynthesis of ethylene carbonate from CO2 and ethylene," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Zuo, Ruiwang & Fan, Linhao & Wang, Jiaqi & Du, Qing & Jiao, Kui, 2024. "Revealing the structural and transport properties in the narrow channels of porous carbon for fuel cells," Energy, Elsevier, vol. 307(C).
    7. Xueping Qin & Heine A. Hansen & Karoliina Honkala & Marko M. Melander, 2023. "Cation-induced changes in the inner- and outer-sphere mechanisms of electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Yongqiang Li & Siwei Yang & Wancheng Bao & Quan Tao & Xiuyun Jiang & Jipeng Li & Peng He & Gang Wang & Kai Qi & Hui Dong & Guqiao Ding & Xiaoming Xie, 2024. "Accelerated proton dissociation in an excited state induces superacidic microenvironments around graphene quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Chongyang Tang & Cong Wei & Yanyan Fang & Bo Liu & Xianyin Song & Zenan Bian & Xuanwei Yin & Hongbo Wang & Zhaohui Liu & Gongming Wang & Xiangheng Xiao & Xiangfeng Duan, 2024. "Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Lirong Guo & Rongchen Chu & Xinyu Hao & Yu Lei & Haibin Li & Dongge Ma & Guo Wang & Chen-Ho Tung & Yifeng Wang, 2024. "Ag3PO4 enables the generation of long-lived radical cations for visible light-driven [2 + 2] and [4 + 2] pericyclic reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Yan Lin & Tuo Wang & Lili Zhang & Gong Zhang & Lulu Li & Qingfeng Chang & Zifan Pang & Hui Gao & Kai Huang & Peng Zhang & Zhi-Jian Zhao & Chunlei Pei & Jinlong Gong, 2023. "Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Lei Wan & Maobin Pang & Junfa Le & Ziang Xu & Hangyu Zhou & Qin Xu & Baoguo Wang, 2022. "Oriented intergrowth of the catalyst layer in membrane electrode assembly for alkaline water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Chen, Jiahui & Wu, Shiliang & Pan, Xian & Zhou, Xin & Zhang, Xinchi, 2025. "Electrochemical reduction hydrogenation, hydrogenolysis and dimerization of bio-derived aldehydes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    15. Lin, P.Z. & Sun, J. & He, C.X. & Wu, M.C. & Zhao, T.S., 2024. "Modeling proton exchange membrane fuel cells with platinum-group-metal-free catalysts," Applied Energy, Elsevier, vol. 360(C).
    16. Chu Chu & Long Long Ma & Hyder Alawi & Wenchao Ma & YiFei Zhu & Junhao Sun & Yao Lu & Yixian Xue & Guanyi Chen, 2024. "Mechanistic exploration of polytetrafluoroethylene thermal plasma gasification through multiscale simulation coupled with experimental validation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Lei Huang & Min Wei & Ruijuan Qi & Chung-Li Dong & Dai Dang & Cheng-Chieh Yang & Chenfeng Xia & Chao Chen & Shahid Zaman & Fu-Min Li & Bo You & Bao Yu Xia, 2022. "An integrated platinum-nanocarbon electrocatalyst for efficient oxygen reduction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Yang, Xi & Fang, Haoyan & Li, Qiming & Cao, Jing, 2024. "Investigation on performance of full-scale proton exchange membrane fuel cell: Porous foam flow field with integrated bipolar plate/gas diffusion layer," Energy, Elsevier, vol. 287(C).
    19. Junmei Chen & Haoran Qiu & Yilin Zhao & Haozhou Yang & Lei Fan & Zhihe Liu & ShiBo Xi & Guangtai Zheng & Jiayi Chen & Lei Chen & Ya Liu & Liejin Guo & Lei Wang, 2024. "Selective and stable CO2 electroreduction at high rates via control of local H2O/CO2 ratio," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Javaid, Usman & Mehmood, Adeel & Iqbal, Jamshed & Uppal, Ali Arshad, 2023. "Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies," Energy, Elsevier, vol. 269(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58486-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.