IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58484-0.html
   My bibliography  Save this article

Matrix plainification leads to high thermoelectric performance in plastic Cu2Se/SnSe composites

Author

Listed:
  • Pan Ying

    (Nanjing University of Science and Technology)

  • Qingyang Jian

    (Nanjing University of Science and Technology)

  • Yaru Gong

    (Nanjing University of Science and Technology)

  • Tong Song

    (Xi’an Jiaotong University)

  • Yuxuan Yang

    (Xi’an Jiaotong University)

  • Yang Geng

    (Nanjing University of Science and Technology)

  • Junquan Huang

    (Yanshan University)

  • Rongxin Sun

    (Yanshan University)

  • Chen Chen

    (Yanshan University)

  • Tao Shen

    (Yanshan University)

  • Yanan Li

    (Nanjing University of Science and Technology)

  • Wei Dou

    (Nanjing University of Science and Technology)

  • Congmin Liang

    (Nanjing University of Science and Technology)

  • Yuqi Liu

    (Nanjing University of Science and Technology)

  • Deshang Xiang

    (Nanjing University of Science and Technology)

  • Tao Feng

    (Nanjing University of Science and Technology)

  • Xiaoyu Fei

    (Qufu Normal University)

  • Yongsheng Zhang

    (Qufu Normal University)

  • Kun Song

    (Nanjing Tech University)

  • Yang Zhang

    (Xi’an Jiaotong University)

  • Haijun Wu

    (Xi’an Jiaotong University)

  • Guodong Tang

    (Nanjing University of Science and Technology)

Abstract

Thermoelectric technology exhibits significant potential for power generation and electronic cooling. In this study, we report the achievement of exceptional thermoelectric performance and high plasticity in stable Cu2Se/SnSe composites. A novel matrix plainification strategy was employed to eliminate lattice vacancies within the Cu2Se matrix of the Cu2Se/SnSe composites, resulting in a marked improvement in carrier mobility and power factor. The presence of quasi-coherent interfaces induces phonon scattering, reducing lattice thermal conductivity without compromising carrier mobility. Consequently, a high figure of merit (ZT) of 3.3 was attained in the Cu2Se/5 wt.% Sn0.96Pb0.01Zn0.03Se composite. Additionally, the presence of high-density nanotwins imparts remarkable plasticity to the composite, yielding a compressive strain of 12%. The secondary phase contributes to the stability of the composite by hindering the extensive migration of Cu ions through bonding interactions. Our findings present a novel strategy for enhancing the thermoelectric performance of composite semiconductors, with potential applicability to other thermoelectric systems.

Suggested Citation

  • Pan Ying & Qingyang Jian & Yaru Gong & Tong Song & Yuxuan Yang & Yang Geng & Junquan Huang & Rongxin Sun & Chen Chen & Tao Shen & Yanan Li & Wei Dou & Congmin Liang & Yuqi Liu & Deshang Xiang & Tao Fe, 2025. "Matrix plainification leads to high thermoelectric performance in plastic Cu2Se/SnSe composites," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58484-0
    DOI: 10.1038/s41467-025-58484-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58484-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58484-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longquan Wang & Wenhao Zhang & Song Yi Back & Naoyuki Kawamoto & Duy Hieu Nguyen & Takao Mori, 2024. "High-performance Mg3Sb2-based thermoelectrics with reduced structural disorder and microstructure evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhifang Zhou & Yi Huang & Bin Wei & Yueyang Yang & Dehong Yu & Yunpeng Zheng & Dongsheng He & Wenyu Zhang & Mingchu Zou & Jin-Le Lan & Jiaqing He & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Compositing effects for high thermoelectric performance of Cu2Se-based materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Pengfei Qiu & Matthias T. Agne & Yongying Liu & Yaqin Zhu & Hongyi Chen & Tao Mao & Jiong Yang & Wenqing Zhang & Sossina M. Haile & Wolfgang G. Zeier & Jürgen Janek & Ctirad Uher & Xun Shi & Lidong Ch, 2018. "Suppression of atom motion and metal deposition in mixed ionic electronic conductors," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Airan Li & Longquan Wang & Jiankang Li & Xinzhi Wu & Takao Mori, 2025. "Self-optimized contact in air-robust thermoelectric junction towards long-lasting heat harvesting," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Meiling Chen & Wenhao Liu & Pengcheng Ding & Fengwu Guo & Zhuo Li & Yanghan Chen & Wei Yi & Ye Sun & Jianchen Lu & Lev Kantorovich & Miao Yu, 2025. "Semiconductor-to-metal surface reconstruction in copper selenide/copper heterostructures steered by photoinduced interlayer atom migration," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    3. Yunpeng Zheng & Qinghua Zhang & Caijuan Shi & Zhifang Zhou & Yang Lu & Jian Han & Hetian Chen & Yunpeng Ma & Yujun Zhang & Changpeng Lin & Wei Xu & Weigang Ma & Qian Li & Yueyang Yang & Bin Wei & Bing, 2024. "Carrier-phonon decoupling in perovskite thermoelectrics via entropy engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Yi-Xin Zhang & Qin-Yuan Huang & Xi Yan & Chong-Yu Wang & Tian-Yu Yang & Zi-Yuan Wang & Yong-Cai Shi & Quan Shan & Jing Feng & Zhen-Hua Ge, 2024. "Synergistically optimized electron and phonon transport in high-performance copper sulfides thermoelectric materials via one-pot modulation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Jing-Yuan Liu & Ling Chen & Li-Ming Wu, 2022. "Ag9GaSe6: high-pressure-induced Ag migration causes thermoelectric performance irreproducibility and elimination of such instability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Dongwang Yang & Xianli Su & Jian He & Yonggao Yan & Jun Li & Hui Bai & Tingting Luo & Yamei Liu & Hao Luo & Yimeng Yu & Jinsong Wu & Qingjie Zhang & Ctirad Uher & Xinfeng Tang, 2021. "Fast ion transport for synthesis and stabilization of β-Zn4Sb3," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Zhifang Zhou & Yi Huang & Bin Wei & Yueyang Yang & Dehong Yu & Yunpeng Zheng & Dongsheng He & Wenyu Zhang & Mingchu Zou & Jin-Le Lan & Jiaqing He & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Compositing effects for high thermoelectric performance of Cu2Se-based materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Liu, Wei-Di & Yu, Yao & Dargusch, Matthew & Liu, Qingfeng & Chen, Zhi-Gang, 2021. "Carbon allotrope hybrids advance thermoelectric development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Lu Yang & Zhiyu Zhao & Boshi Tian & Meiqi Yang & Yushan Dong & Bingchen Zhou & Shili Gai & Ying Xie & Jun Lin, 2024. "A singular plasmonic-thermoelectric hollow nanostructure inducing apoptosis and cuproptosis for catalytic cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Qian Deng & Xiao-Lei Shi & Meng Li & Xiaobo Tan & Ruiheng Li & Chen Wang & Yue Chen & Hongliang Dong & Ran Ang & Zhi-Gang Chen, 2025. "Lattice defect engineering advances n-type PbSe thermoelectrics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Yilin Jiang & Bin Su & Jincheng Yu & Zhanran Han & Haihua Hu & Hua-Lu Zhuang & Hezhang Li & Jinfeng Dong & Jing-Wei Li & Chao Wang & Zhen-Hua Ge & Jing Feng & Fu-Hua Sun & Jing-Feng Li, 2024. "Exceptional figure of merit achieved in boron-dispersed GeTe-based thermoelectric composites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58484-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.