IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58449-3.html
   My bibliography  Save this article

Boosting classical and quantum nonlinear processes in ultrathin van der Waals materials

Author

Listed:
  • Xiaodan Lyu

    (Nanyang Technological University
    Sorbonne Université, National University of Singapore, Nanyang Technological University)

  • Leevi Kallioniemi

    (Nanyang Technological University)

  • Hongbing Cai

    (University of Science and Technology of China)

  • Liheng An

    (Nanyang Technological University)

  • Ruihuan Duan

    (Nanyang Technological University)

  • Shuin Jian Wu

    (National University of Singapore)

  • Qinghai Tan

    (University of Science and Technology of China)

  • Chusheng Zhang

    (Nanyang Technological University)

  • Ruihua He

    (Nanyang Technological University)

  • Yansong Miao

    (Nanyang Technological University)

  • Zheng Liu

    (Nanyang Technological University)

  • Alexander Ling

    (National University of Singapore
    National University of Singapore)

  • Jesus Zúñiga-Perez

    (Nanyang Technological University
    Sorbonne Université, National University of Singapore, Nanyang Technological University)

  • Weibo Gao

    (Nanyang Technological University
    Sorbonne Université, National University of Singapore, Nanyang Technological University
    Nanyang Technological University
    Nanyang Technological University)

Abstract

Understanding and controlling nonlinear processes is crucial for engineering light-matter interaction and generating non-classical light. A significant challenge in ultra-thin nonlinear materials is the marked diminution of the nonlinear conversion efficiency due to the reduced light-matter interaction length and, in many cases, the centrosymmetric crystalline structures. Here we relax these limitations and report a giant boost of classical and quantum nonlinear processes in ultrathin van der Waals materials. Specifically, with a metal-nonlinear material heterostructure we enhance classical second-harmonic generation in h-BN flakes by two orders of magnitude. Moreover, we have engineered a metal-SiO2-nonlinear material heterostructure resulting in a remarkable two orders of magnitude augmentation of the quantum spontaneous parametric down-conversion (SPDC) in NbOCl2 flakes. Notably, we demonstrate SPDC in a 16 nm-thick NbOCl2 flake integrated into the proposed structure. These findings simplify on-chip quantum state engineering and accelerate the use of van der Waals materials in nonlinear optoelectronics.

Suggested Citation

  • Xiaodan Lyu & Leevi Kallioniemi & Hongbing Cai & Liheng An & Ruihuan Duan & Shuin Jian Wu & Qinghai Tan & Chusheng Zhang & Ruihua He & Yansong Miao & Zheng Liu & Alexander Ling & Jesus Zúñiga-Perez & , 2025. "Boosting classical and quantum nonlinear processes in ultrathin van der Waals materials," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58449-3
    DOI: 10.1038/s41467-025-58449-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58449-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58449-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Liu & Yu Huang & Xiangfeng Duan, 2019. "Van der Waals integration before and beyond two-dimensional materials," Nature, Nature, vol. 567(7748), pages 323-333, March.
    2. Mudassar Nauman & Jingshi Yan & Domenico de Ceglia & Mohsen Rahmani & Khosro Zangeneh Kamali & Costantino De Angelis & Andrey E. Miroshnichenko & Yuerui Lu & Dragomir N. Neshev, 2021. "Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Qiangbing Guo & Xiao-Zhuo Qi & Lishu Zhang & Meng Gao & Sanlue Hu & Wenju Zhou & Wenjie Zang & Xiaoxu Zhao & Junyong Wang & Bingmin Yan & Mingquan Xu & Yun-Kun Wu & Goki Eda & Zewen Xiao & Shengyuan A, 2023. "Ultrathin quantum light source with van der Waals NbOCl2 crystal," Nature, Nature, vol. 613(7942), pages 53-59, January.
    4. Ming Liu & Xiaobo Yin & Erick Ulin-Avila & Baisong Geng & Thomas Zentgraf & Long Ju & Feng Wang & Xiang Zhang, 2011. "A graphene-based broadband optical modulator," Nature, Nature, vol. 474(7349), pages 64-67, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodan Lyu & Leevi Kallioniemi & Hao Hong & Rui Qu & Yan Zhang & Jesus Zúñiga-Perez & Kaihui Liu & Weibo Gao, 2025. "A tunable entangled photon-pair source based on a Van der Waals insulator," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    2. Maximilian A. Weissflog & Anna Fedotova & Yilin Tang & Elkin A. Santos & Benjamin Laudert & Saniya Shinde & Fatemeh Abtahi & Mina Afsharnia & Inmaculada Pérez Pérez & Sebastian Ritter & Hao Qin & Jiri, 2024. "A tunable transition metal dichalcogenide entangled photon-pair source," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Sixu Wang & Wei Li & Chenguang Deng & Zijian Hong & Han-Bin Gao & Xiaolong Li & Yueliang Gu & Qiang Zheng & Yongjun Wu & Paul G. Evans & Jing-Feng Li & Ce-Wen Nan & Qian Li, 2024. "Giant electric field-induced second harmonic generation in polar skyrmions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Min Yue & Kenan Zhang & Mei Zhao & Yinan Wang & Dong Li & Jieyuan Liang & Biyuan Zheng & Chao Zou & Yu Ye & Peijian Wang & Lijie Zhang & Shun Wang, 2025. "2D Cd metal contacts via low-temperature van der Waals epitaxy towards high-performance 2D transistors," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. Yilin Tang & Kabilan Sripathy & Hao Qin & Zhuoyuan Lu & Giovanni Guccione & Jiri Janousek & Yi Zhu & Md Mehedi Hasan & Yoshihiro Iwasa & Ping Koy Lam & Yuerui Lu, 2024. "Quasi-phase-matching enabled by van der Waals stacking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Seong Won Lee & Jong Seok Lee & Woo Hun Choi & Daegwang Choi & Su-Hyun Gong, 2024. "Ultra-compact exciton polariton modulator based on van der Waals semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Georgy A. Ermolaev & Kirill V. Voronin & Adilet N. Toksumakov & Dmitriy V. Grudinin & Ilia M. Fradkin & Arslan Mazitov & Aleksandr S. Slavich & Mikhail K. Tatmyshevskiy & Dmitry I. Yakubovsky & Valent, 2024. "Wandering principal optical axes in van der Waals triclinic materials," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Shuangzan Lu & Deping Guo & Zhengbo Cheng & Yanping Guo & Cong Wang & Jinghao Deng & Yusong Bai & Cheng Tian & Linwei Zhou & Youguo Shi & Jun He & Wei Ji & Chendong Zhang, 2023. "Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Qiangbing Guo & Yun-Kun Wu & Di Zhang & Qiuhong Zhang & Guang-Can Guo & Andrea Alù & Xi-Feng Ren & Cheng-Wei Qiu, 2024. "Polarization entanglement enabled by orthogonally stacked van der Waals NbOCl2 crystals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Sangyong Park & Dongyoung Lee & Juncheol Kang & Hojin Choi & Jin-Hong Park, 2023. "Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Kunze Lu & Manlin Luo & Weibo Gao & Qi Jie Wang & Hao Sun & Donguk Nam, 2023. "Strong second-harmonic generation by sublattice polarization in non-uniformly strained monolayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Hao Jiang & Jintao Fu & Jingxuan Wei & Shaojuan Li & Changbin Nie & Feiying Sun & Qing Yang Steve Wu & Mingxiu Liu & Zhaogang Dong & Xingzhan Wei & Weibo Gao & Cheng-Wei Qiu, 2024. "Synergistic-potential engineering enables high-efficiency graphene photodetectors for near- to mid-infrared light," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Luca Sortino & Angus Gale & Lucca Kühner & Chi Li & Jonas Biechteler & Fedja J. Wendisch & Mehran Kianinia & Haoran Ren & Milos Toth & Stefan A. Maier & Igor Aharonovich & Andreas Tittl, 2024. "Optically addressable spin defects coupled to bound states in the continuum metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Teng Tan & Zhongye Yuan & Hao Zhang & Guofeng Yan & Siyu Zhou & Ning An & Bo Peng & Giancarlo Soavi & Yunjiang Rao & Baicheng Yao, 2021. "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Shu Hu & Junyang Huang & Rakesh Arul & Ana Sánchez-Iglesias & Yuling Xiong & Luis M. Liz-Marzán & Jeremy J. Baumberg, 2024. "Robust consistent single quantum dot strong coupling in plasmonic nanocavities," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Junpeng Zeng & Daowei He & Jingsi Qiao & Yating Li & Li Sun & Weisheng Li & Jiacheng Xie & Si Gao & Lijia Pan & Peng Wang & Yong Xu & Yun Li & Hao Qiu & Yi Shi & Jian-Bin Xu & Wei Ji & Xinran Wang, 2023. "Ultralow contact resistance in organic transistors via orbital hybridization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Fu, Xubing & Liu, Yan & Wang, Xiaodong & Kang, Lei & Qiu, Tianjie, 2025. "Graphene-based advanced materials for energy storage and conversion systems: Progress, challenges, and commercial future," Applied Energy, Elsevier, vol. 386(C).
    19. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Leilei Ye & Xiaorong Gan & Romana Schirhagl, 2024. "Two-Dimensional MoS 2 -Based Photodetectors," Sustainability, MDPI, vol. 16(22), pages 1-36, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58449-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.