IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58251-1.html
   My bibliography  Save this article

On-chip real-time detection of optical frequency variations with ultrahigh resolution using the sine-cosine encoder approach

Author

Listed:
  • X. Steve Yao

    (Hebei University
    Inc)

  • Yulong Yang

    (Hebei University)

  • Xiaosong Ma

    (Hebei University)

  • Zhongjin Lin

    (Sun Yat-sen University)

  • Yuntao Zhu

    (Sun Yat-sen University)

  • Wei Ke

    (Liobate Technologies)

  • Heyun Tan

    (Sun Yat-sen University)

  • Xichen Wang

    (NeoPIC Technologies)

  • Xinlun Cai

    (Sun Yat-sen University)

Abstract

Real-time measurement of optical frequency variations (OFVs) is crucial for various applications including laser frequency control, optical computing, and optical sensing. Traditional devices, though accurate, are often too large, slow, and costly. Here we present a photonic integrated circuit (PIC) chip, utilizing the sine-cosine encoder principle, for high-speed and high-resolution real-time OFV measurement. Fabricated on a thin film lithium niobate (TFLN) platform, this chip-sized optical frequency detector (OFD) (5.5 mm × 2.7 mm) achieves a speed of up to 2500 THz/s and a resolution as fine as 2 MHz over a range exceeding 160 nm. Our robust algorithm overcomes the device imperfections and ensures precise quantification of OFV parameters. As a practical demonstration, the PIC OFD surpasses existing fiber Bragg grating (FBG) interrogators in sensitivity and speed for strain and vibration measurements. This work opens new avenues for on-chip OFV detection and offers significant potential for diverse applications involving OFV measurement.

Suggested Citation

  • X. Steve Yao & Yulong Yang & Xiaosong Ma & Zhongjin Lin & Yuntao Zhu & Wei Ke & Heyun Tan & Xichen Wang & Xinlun Cai, 2025. "On-chip real-time detection of optical frequency variations with ultrahigh resolution using the sine-cosine encoder approach," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58251-1
    DOI: 10.1038/s41467-025-58251-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58251-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58251-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Feldmann & N. Youngblood & C. D. Wright & H. Bhaskaran & W. H. P. Pernice, 2019. "All-optical spiking neurosynaptic networks with self-learning capabilities," Nature, Nature, vol. 569(7755), pages 208-214, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajjad Abdollahramezani & Omid Hemmatyar & Mohammad Taghinejad & Hossein Taghinejad & Alex Krasnok & Ali A. Eftekhar & Christian Teichrib & Sanchit Deshmukh & Mostafa A. El-Sayed & Eric Pop & Matthias, 2022. "Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Ui Yeon Won & Quoc An Vu & Sung Bum Park & Mi Hyang Park & Van Dam Do & Hyun Jun Park & Heejun Yang & Young Hee Lee & Woo Jong Yu, 2023. "Multi-neuron connection using multi-terminal floating–gate memristor for unsupervised learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    4. Dongliang Wang & Yikun Nie & Gaolei Hu & Hon Ki Tsang & Chaoran Huang, 2024. "Ultrafast silicon photonic reservoir computing engine delivering over 200 TOPS," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Reyhane Ahmadi & Amirreza Ahmadnejad & Somayyeh Koohi, 2024. "Free-space optical spiking neural network," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-19, December.
    6. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Chenduan Chen & Zhan Yang & Tao Wang & Yalun Wang & Kai Gao & Jiajia Wu & Jun Wang & Jianrong Qiu & Dezhi Tan, 2024. "Ultra-broadband all-optical nonlinear activation function enabled by MoTe2/optical waveguide integrated devices," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Xiaoyun Yuan & Yong Wang & Zhihao Xu & Tiankuang Zhou & Lu Fang, 2023. "Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Jin Zhao & Wen-Xiong Song & Tianjiao Xin & Zhitang Song, 2021. "Rules of hierarchical melt and coordinate bond to design crystallization in doped phase change materials," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Elena Goi & Steffen Schoenhardt & Min Gu, 2022. "Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Yunping Bai & Yifu Xu & Shifan Chen & Xiaotian Zhu & Shuai Wang & Sirui Huang & Yuhang Song & Yixuan Zheng & Zhihui Liu & Sim Tan & Roberto Morandotti & Sai T. Chu & Brent E. Little & David J. Moss & , 2025. "TOPS-speed complex-valued convolutional accelerator for feature extraction and inference," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Pengzhan Li & Mingzhen Zhang & Qingli Zhou & Qinghua Zhang & Donggang Xie & Ge Li & Zhuohui Liu & Zheng Wang & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2024. "Reconfigurable optoelectronic transistors for multimodal recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Hangyuan Cui & Yu Xiao & Yang Yang & Mengjiao Pei & Shuo Ke & Xiao Fang & Lesheng Qiao & Kailu Shi & Haotian Long & Weigao Xu & Pingqiang Cai & Peng Lin & Yi Shi & Qing Wan & Changjin Wan, 2025. "A bioinspired in-materia analog photoelectronic reservoir computing for human action processing," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Chao Qian & Ido Kaminer & Hongsheng Chen, 2025. "A guidance to intelligent metamaterials and metamaterials intelligence," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    17. He-Shan Zhang & Xue-Mei Dong & Zi-Cheng Zhang & Ze-Pu Zhang & Chao-Yi Ban & Zhe Zhou & Cheng Song & Shi-Qi Yan & Qian Xin & Ju-Qing Liu & Yin-Xiang Li & Wei Huang, 2022. "Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Jian Yao & Qinan Wang & Yong Zhang & Yu Teng & Jing Li & Pin Zhao & Chun Zhao & Ziyi Hu & Zongjie Shen & Liwei Liu & Dan Tian & Song Qiu & Zhongrui Wang & Lixing Kang & Qingwen Li, 2024. "Ultra-low power carbon nanotube/porphyrin synaptic arrays for persistent photoconductivity and neuromorphic computing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Chuyu Zhong & Kun Liao & Tianxiang Dai & Maoliang Wei & Hui Ma & Jianghong Wu & Zhibin Zhang & Yuting Ye & Ye Luo & Zequn Chen & Jialing Jian & Chunlei Sun & Bo Tang & Peng Zhang & Ruonan Liu & Junyin, 2023. "Graphene/silicon heterojunction for reconfigurable phase-relevant activation function in coherent optical neural networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Bassem Tossoun & Di Liang & Stanley Cheung & Zhuoran Fang & Xia Sheng & John Paul Strachan & Raymond G. Beausoleil, 2024. "High-speed and energy-efficient non-volatile silicon photonic memory based on heterogeneously integrated memresonator," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58251-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.