IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58067-z.html
   My bibliography  Save this article

Reprogramming yeast metabolism for customized starch-rich micro-grain through low-carbon microbial manufacturing

Author

Listed:
  • Zhihui Shi

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing
    National Center of Technology Innovation for Synthetic Biology)

  • Zhaoyu Xu

    (Chinese Academy of Sciences
    National Center of Technology Innovation for Synthetic Biology)

  • Weihe Rong

    (Chinese Academy of Sciences
    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing
    National Center of Technology Innovation for Synthetic Biology
    TIB-UM Joint Laboratory of Synthetic Biology for Traditional Chinese Medicine)

  • Hongbing Sun

    (Chinese Academy of Sciences
    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing
    National Center of Technology Innovation for Synthetic Biology)

  • Hongyi Zhou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing
    National Center of Technology Innovation for Synthetic Biology)

  • Qianqian Yuan

    (Chinese Academy of Sciences
    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing
    National Center of Technology Innovation for Synthetic Biology)

  • Aixuan Xiao

    (Chinese Academy of Sciences
    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing
    National Center of Technology Innovation for Synthetic Biology
    TIB-UM Joint Laboratory of Synthetic Biology for Traditional Chinese Medicine)

  • Hongfei Ma

    (Chinese Academy of Sciences
    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing
    National Center of Technology Innovation for Synthetic Biology
    TIB-UM Joint Laboratory of Synthetic Biology for Traditional Chinese Medicine)

  • Tao Cai

    (Chinese Academy of Sciences
    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing
    National Center of Technology Innovation for Synthetic Biology)

  • Guokun Wang

    (Chinese Academy of Sciences
    State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing
    National Center of Technology Innovation for Synthetic Biology
    TIB-UM Joint Laboratory of Synthetic Biology for Traditional Chinese Medicine)

  • Yanhe Ma

    (Chinese Academy of Sciences
    National Center of Technology Innovation for Synthetic Biology)

Abstract

Starch is a primary food ingredient and industrial feedstock. Low-carbon microbial manufacturing offers a carbon-neutral/negative arable land-independent strategy for starch production. Here, we reconfigure the oleaginous yeast as a starch-rich micro-grain producer by rewiring the starch biosynthesis and gluconeogenesis pathways and regulating cell morphology. With the CO2 electro-synthesized acetate as the substrate, the strain accumulates starch 47.18% of dry cell weight. The optimized system renders spatial-temporal starch productivity (243.7 g/m2/d) approximately 50-fold higher than crop cultivation and volumetric productivity (160.83 mg/L/h) over other microbial systems by an order of magnitude. We demonstrate tunable starch composition and starch-protein ratios via strain and process engineering. The engineered artificial strains adopt a cellular resources reallocation strategy to ensure high-level starch production in micro-grain and could facilitate a highly efficient straw/cellulose-to-starch conversion. This work elucidates starch biosynthesis machinery and establishes a superior-to-nature platform for customizable starch synthesis, advancing low-carbon nutritional manufacturing.

Suggested Citation

  • Zhihui Shi & Zhaoyu Xu & Weihe Rong & Hongbing Sun & Hongyi Zhou & Qianqian Yuan & Aixuan Xiao & Hongfei Ma & Tao Cai & Guokun Wang & Yanhe Ma, 2025. "Reprogramming yeast metabolism for customized starch-rich micro-grain through low-carbon microbial manufacturing," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58067-z
    DOI: 10.1038/s41467-025-58067-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58067-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58067-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Briardo Llorente & Thomas C. Williams & Hugh D. Goold & Isak S. Pretorius & Ian T. Paulsen, 2022. "Harnessing bioengineered microbes as a versatile platform for space nutrition," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Xiangbin Kong, 2014. "China must protect high-quality arable land," Nature, Nature, vol. 506(7486), pages 7-7, February.
    3. Alicia E. Graham & Rodrigo Ledesma-Amaro, 2023. "The microbial food revolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Jian Jin & Joshua Wicks & Qiuhong Min & Jun Li & Yongfeng Hu & Jingyuan Ma & Yu Wang & Zheng Jiang & Yi Xu & Ruihu Lu & Gangzheng Si & Panagiotis Papangelakis & Mohsen Shakouri & Qunfeng Xiao & Pengfe, 2023. "Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction," Nature, Nature, vol. 617(7962), pages 724-729, May.
    5. John Blazeck & Andrew Hill & Leqian Liu & Rebecca Knight & Jarrett Miller & Anny Pan & Peter Otoupal & Hal S. Alper, 2014. "Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production," Nature Communications, Nature, vol. 5(1), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    2. Vayu Maini Rekdal & Casper R. B. Luijt & Yan Chen & Ramu Kakumanu & Edward E. K. Baidoo & Christopher J. Petzold & Pablo Cruz-Morales & Jay D. Keasling, 2024. "Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Chengqiang Li & Junxiao Wang & Liang Ge & Yujie Zhou & Shenglu Zhou, 2022. "Optimization of Sample Construction Based on NDVI for Cultivated Land Quality Prediction," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    4. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
    6. Cheng, Mingyang & Yansui Liu, & Zhou, Yang, 2019. "Measuring the symbiotic development of rural housing and industry: A case study of Fuping County in the Taihang Mountains in China," Land Use Policy, Elsevier, vol. 82(C), pages 307-316.
    7. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    8. Xing Liu & Zhaoyang Cai & Yan Xu & Huihui Zheng & Kaige Wang & Fengrong Zhang, 2022. "Suitability Evaluation of Cultivated Land Reserved Resources in Arid Areas Based on Regional Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1463-1479, March.
    9. Jinnan Wu & Jian Long & Lingfei Liu & Juan Li & Hongkai Liao & Mingjiang Zhang & Chang Zhao & Qiusheng Wu, 2018. "Risk Assessment and Source Identification of Toxic Metals in the Agricultural Soil around a Pb/Zn Mining and Smelting Area in Southwest China," IJERPH, MDPI, vol. 15(9), pages 1-19, August.
    10. Aneta Kowalska & Anna Grobelak & Åsgeir R. Almås & Bal Ram Singh, 2020. "Effect of Biowastes on Soil Remediation, Plant Productivity and Soil Organic Carbon Sequestration: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    11. Qianru Chen & Hualin Xie, 2019. "Temporal-Spatial Differentiation and Optimization Analysis of Cultivated Land Green Utilization Efficiency in China," Land, MDPI, vol. 8(11), pages 1-17, October.
    12. Hakyung Lee & Jinjin Diao & Yuxin Tian & Richa Guleria & Eunseo Lee & Alexandra Smith & Millie Savage & Daniel Yeh & Luke Roberson & Mark Blenner & Yinjie J. Tang & Tae Seok Moon, 2025. "Developing an alternative medium for in-space biomanufacturing," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    13. Hefei Li & Pengfei Wei & Tianfu Liu & Mingrun Li & Chao Wang & Rongtan Li & Jinyu Ye & Zhi-You Zhou & Shi-Gang Sun & Qiang Fu & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2024. "CO electrolysis to multicarbon products over grain boundary-rich Cu nanoparticles in membrane electrode assembly electrolyzers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Hongguang Zhang & Asfaw Yohannes & Heng Zhao & Zheng Li & Yejun Xiao & Xi Cheng & Hui Wang & Zhangkang Li & Samira Siahrostami & Md Golam Kibria & Jinguang Hu, 2025. "Photocatalytic asymmetric C-C coupling for CO2 reduction on dynamically reconstructed Ruδ+-O/Ru0-O sites," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    15. Dan Lu & Yahui Wang & Qingyuan Yang & Huiyan He & Kangchuan Su, 2019. "Exploring a Moderate Fallow Scale of Cultivated Land in China from the Perspective of Food Security," IJERPH, MDPI, vol. 16(22), pages 1-19, November.
    16. Min Xu & Chunyang He & Zhifeng Liu & Yinyin Dou, 2016. "How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    17. Das, Manali & Patra, Pradipta & Ghosh, Amit, 2020. "Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    19. Lijuan Miao & Feng Zhu & Zhanli Sun & John C. Moore & Xuefeng Cui, 2016. "China’s Land-Use Changes during the Past 300 Years: A Historical Perspective," IJERPH, MDPI, vol. 13(9), pages 1-16, August.
    20. Robles-Iglesias, Raúl & Naveira-Pazos, Cecilia & Fernández-Blanco, Carla & Veiga, María C. & Kennes, Christian, 2023. "Factors affecting the optimisation and scale-up of lipid accumulation in oleaginous yeasts for sustainable biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58067-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.