IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57961-w.html
   My bibliography  Save this article

Data-driven design of electrolyte additives supporting high-performance 5 V LiNi0.5Mn1.5O4 positive electrodes

Author

Listed:
  • Bingning Wang

    (Argonne National Laboratory)

  • Hieu A. Doan

    (Argonne National Laboratory)

  • Seoung-Bum Son

    (Argonne National Laboratory)

  • Daniel P. Abraham

    (Argonne National Laboratory)

  • Stephen E. Trask

    (Argonne National Laboratory)

  • Andrew Jansen

    (Argonne National Laboratory)

  • Kang Xu

    (SES AI Corps)

  • Chen Liao

    (Argonne National Laboratory
    Argonne National Laboratory)

Abstract

LiNi0.5Mn1.5O4 (LNMO) is a high-capacity spinel-structured material with an average lithiation/de-lithiation potential at ca. 4.6–4.7 V vs Li+/Li, far exceeding the stability limits of electrolytes. An efficient way to enable LNMO in lithium-ion batteries is to reformulate an electrolyte composition that stabilizes both graphitic (Gr) negative electrode with solid-electrolyte-interphase and LNMO with cathode-electrolyte-interphase. In this study, we select and test a diverse collection of 28 single and dual additives for the Gr||LNMO battery system. Subsequently, we train machine learning models on this dataset and employ the trained models to suggest 6 binary compositions out of 125, based on predicted final area-specific-impedance, impedance rise, and final specific-capacity. Such machine learning-generated new additives outperform the initial dataset. This finding not only underscores the efficacy of machine learning in identifying materials in a highly complicated application space but also showcases an accelerated material discovery workflow that directly integrates data-driven methods with battery testing experiments.

Suggested Citation

  • Bingning Wang & Hieu A. Doan & Seoung-Bum Son & Daniel P. Abraham & Stephen E. Trask & Andrew Jansen & Kang Xu & Chen Liao, 2025. "Data-driven design of electrolyte additives supporting high-performance 5 V LiNi0.5Mn1.5O4 positive electrodes," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57961-w
    DOI: 10.1038/s41467-025-57961-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57961-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57961-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adarsh Dave & Jared Mitchell & Sven Burke & Hongyi Lin & Jay Whitacre & Venkatasubramanian Viswanathan, 2022. "Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Tian Xie & Arthur France-Lanord & Yanming Wang & Jeffrey Lopez & Michael A. Stolberg & Megan Hill & Graham Michael Leverick & Rafael Gomez-Bombarelli & Jeremiah A. Johnson & Yang Shao-Horn & Jeffrey C, 2022. "Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juran Noh & Hieu A. Doan & Heather Job & Lily A. Robertson & Lu Zhang & Rajeev S. Assary & Karl Mueller & Vijayakumar Murugesan & Yangang Liang, 2024. "An integrated high-throughput robotic platform and active learning approach for accelerated discovery of optimal electrolyte formulations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Hongyuan Sheng & Jingwen Sun & Oliver Rodríguez & Benjamin B. Hoar & Weitong Zhang & Danlei Xiang & Tianhua Tang & Avijit Hazra & Daniel S. Min & Abigail G. Doyle & Matthew S. Sigman & Cyrille Costent, 2024. "Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Snehi Shrestha & Kieran James Barvenik & Tianle Chen & Haochen Yang & Yang Li & Meera Muthachi Kesavan & Joshua M. Little & Hayden C. Whitley & Zi Teng & Yaguang Luo & Eleonora Tubaldi & Po-Yen Chen, 2024. "Machine intelligence accelerated design of conductive MXene aerogels with programmable properties," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Zheng, Li & Liu, Ruxiang & Zhang, Chunfang & Shi, Yusong & Man, Jianlin & Wang, Yaqun & Chang, Long & Cai, Mian & Yang, Ze & Du, Huiping, 2024. "A complete and effective target-based data-driven flow screening for reliable cathode materials for aluminum-ion batteries," Applied Energy, Elsevier, vol. 376(PB).
    5. Shang Zhu & Bharath Ramsundar & Emil Annevelink & Hongyi Lin & Adarsh Dave & Pin-Wen Guan & Kevin Gering & Venkatasubramanian Viswanathan, 2024. "Differentiable modeling and optimization of non-aqueous Li-based battery electrolyte solutions using geometric deep learning," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57961-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.