IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57832-4.html
   My bibliography  Save this article

Cerebellar output shapes cortical preparatory activity during motor adaptation

Author

Listed:
  • Sharon Israely

    (The Hebrew University)

  • Hugo Ninou

    (The Hebrew University
    PSL University
    PSL University)

  • Ori Rajchert

    (Technion - Israel Institute of Technology)

  • Lee Elmaleh

    (The Hebrew University)

  • Ran Harel

    (Sheba Medical Center)

  • Firas Mawase

    (Technion - Israel Institute of Technology)

  • Jonathan Kadmon

    (The Hebrew University)

  • Yifat Prut

    (The Hebrew University)

Abstract

The cerebellum plays a key role in motor adaptation by driving trial-to-trial recalibration of movements based on previous errors. In primates, cortical correlates of adaptation are encoded already in the pre-movement motor plan, but these early cortical signals could be driven by a cerebellar-to-cortical information flow or evolve independently through intracortical mechanisms. To address this question, we trained female macaque monkeys to reach against a viscous force field (FF) while blocking cerebellar outflow. The cerebellar block led to impaired FF adaptation and a compensatory, re-aiming-like shift in motor cortical preparatory activity. In the null-field conditions, the cerebellar block altered neural preparatory activity by increasing task-representation dimensionality and impeding generalization. A computational model indicated that low-dimensional (cerebellar-like) feedback is sufficient to replicate these findings. We conclude that cerebellar signals carry task structure information that constrains the dimensionality of the cortical preparatory manifold and promotes generalization. In the absence of these signals, cortical mechanisms are harnessed to partially restore adaptation.

Suggested Citation

  • Sharon Israely & Hugo Ninou & Ori Rajchert & Lee Elmaleh & Ran Harel & Firas Mawase & Jonathan Kadmon & Yifat Prut, 2025. "Cerebellar output shapes cortical preparatory activity during motor adaptation," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57832-4
    DOI: 10.1038/s41467-025-57832-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57832-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57832-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    2. W. Jeffrey Johnston & Stefano Fusi, 2023. "Abstract representations emerge naturally in neural networks trained to perform multiple tasks," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Valerio Mante & David Sussillo & Krishna V. Shenoy & William T. Newsome, 2013. "Context-dependent computation by recurrent dynamics in prefrontal cortex," Nature, Nature, vol. 503(7474), pages 78-84, November.
    4. Peter Mussells Pires & Lingwei Zhang & Victoria Parache & L. F. Abbott & Gaby Maimon, 2024. "Converting an allocentric goal into an egocentric steering signal," Nature, Nature, vol. 626(8000), pages 808-818, February.
    5. Xulu Sun & Daniel J. O’Shea & Matthew D. Golub & Eric M. Trautmann & Saurabh Vyas & Stephen I. Ryu & Krishna V. Shenoy, 2022. "Cortical preparatory activity indexes learned motor memories," Nature, Nature, vol. 602(7896), pages 274-279, February.
    6. Martha L. Streng & Laurentiu S. Popa & Timothy J. Ebner, 2018. "Modulation of sensory prediction error in Purkinje cells during visual feedback manipulations," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    7. Scott T. Albert & Jihoon Jang & Hannah R. Sheahan & Lonneke Teunissen & Koenraad Vandevoorde & David J. Herzfeld & Reza Shadmehr, 2021. "An implicit memory of errors limits human sensorimotor adaptation," Nature Human Behaviour, Nature, vol. 5(7), pages 920-934, July.
    8. Ellen Boven & Joseph Pemberton & Paul Chadderton & Richard Apps & Rui Ponte Costa, 2023. "Cerebro-cerebellar networks facilitate learning through feedback decoupling," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Juan A. Gallego & Matthew G. Perich & Stephanie N. Naufel & Christian Ethier & Sara A. Solla & Lee E. Miller, 2018. "Cortical population activity within a preserved neural manifold underlies multiple motor behaviors," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    10. Kurt A. Thoroughman & Reza Shadmehr, 2000. "Learning of action through adaptive combination of motor primitives," Nature, Nature, vol. 407(6805), pages 742-747, October.
    11. repec:plo:pbio00:0040179 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Feulner & Matthew G. Perich & Lee E. Miller & Claudia Clopath & Juan A. Gallego, 2025. "A neural implementation model of feedback-based motor learning," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Hao Guo & Shenbing Kuang & Alexander Gail, 2025. "Sensorimotor environment but not task rule reconfigures population dynamics in rhesus monkey posterior parietal cortex," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    3. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Barbara Feulner & Matthew G. Perich & Raeed H. Chowdhury & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2022. "Small, correlated changes in synaptic connectivity may facilitate rapid motor learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Ellen Boven & Joseph Pemberton & Paul Chadderton & Richard Apps & Rui Ponte Costa, 2023. "Cerebro-cerebellar networks facilitate learning through feedback decoupling," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    7. Joao Barbosa & Rémi Proville & Chris C. Rodgers & Michael R. DeWeese & Srdjan Ostojic & Yves Boubenec, 2023. "Early selection of task-relevant features through population gating," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Joanna C. Chang & Matthew G. Perich & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2024. "De novo motor learning creates structure in neural activity that shapes adaptation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Cong Zheng & Qifan Wang & He Cui, 2025. "Continuous sensorimotor transformation enhances robustness of neural dynamics to perturbation in macaque motor cortex," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    10. Taisei Sugiyama & Nicolas Schweighofer & Jun Izawa, 2023. "Reinforcement learning establishes a minimal metacognitive process to monitor and control motor learning performance," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Wei-Long Zheng & Zhongxuan Wu & Ali Hummos & Guangyu Robert Yang & Michael M. Halassa, 2024. "Rapid context inference in a thalamocortical model using recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Yan Li & Mitchell Swerdloff & Tianyu She & Asiyah Rahman & Naveen Sharma & Reema Shah & Michael Castellano & Daniel Mogel & Jason Wu & Asim Ahmed & James San Miguel & Jared Cohn & Nikesh Shah & Raddy , 2023. "Robust odor identification in novel olfactory environments in mice," Nature Communications, Nature, vol. 14(1), pages 1-29, December.
    13. Takuya Honda & Masaya Hirashima & Daichi Nozaki, 2012. "Adaptation to Visual Feedback Delay Influences Visuomotor Learning," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    14. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    15. Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    17. Wenyi Zhang & Yang Xie & Tianming Yang, 2022. "Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Lijia Ma & Xingchen Xu & Yong Tan, 2024. "Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based Search Engines," Papers 2402.19421, arXiv.org.
    19. Rishi Rajalingham & Hansem Sohn & Mehrdad Jazayeri, 2025. "Dynamic tracking of objects in the macaque dorsomedial frontal cortex," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    20. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57832-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.