IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57520-3.html
   My bibliography  Save this article

Pathogenic germline variants in Chinese pancreatic adenocarcinoma patients

Author

Listed:
  • Xiaoyi Yin

    (Second Military Medical University (Naval Medical University)
    Second Military Medical University (Naval Medical University))

  • Hui Shen

    (Qingdao University
    Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation
    Second Military Medical University (Naval Medical University))

  • Huan Wang

    (Second Military Medical University (Naval Medical University))

  • Qingchen Wang

    (Fudan University)

  • Shan Zhang

    (Second Military Medical University (Naval Medical University))

  • Chunming Zhang

    (Chinese Academy of Science)

  • Qi Jia

    (Shanghai Jiao Tong University School of Medicine)

  • Shiwei Guo

    (Second Military Medical University (Naval Medical University))

  • Xiongfei Xu

    (Second Military Medical University (Naval Medical University))

  • Wenhui Zhang

    (Second Military Medical University (Naval Medical University))

  • Bo Li

    (Second Military Medical University (Naval Medical University))

  • Xiaohan Shi

    (Second Military Medical University (Naval Medical University))

  • Suizhi Gao

    (Second Military Medical University (Naval Medical University))

  • Meilong Shi

    (Second Military Medical University (Naval Medical University))

  • Xuenan Zhao

    (Second Military Medical University (Naval Medical University))

  • Sheng Wang

    (Second Military Medical University (Naval Medical University))

  • Jiawei Han

    (Second Military Medical University (Naval Medical University)
    Shanghai Jiao Tong University School of Medicine)

  • Guoxiao Zhang

    (Second Military Medical University (Naval Medical University)
    The 72nd Group Army Hospital of Chinese People’s Liberation Army)

  • Yikai Li

    (Second Military Medical University (Naval Medical University))

  • Penghao Li

    (Second Military Medical University (Naval Medical University))

  • Wei Jing

    (Second Military Medical University (Naval Medical University))

  • Bin Song

    (Second Military Medical University (Naval Medical University))

  • Kailian Zheng

    (Second Military Medical University (Naval Medical University))

  • Gang Li

    (Second Military Medical University (Naval Medical University))

  • Yijie Zhang

    (Second Military Medical University (Naval Medical University))

  • Hui Jiang

    (Second Military Medical University (Naval Medical University))

  • Cong Wu

    (Second Military Medical University (Naval Medical University))

  • Zhijian Song

    (OrigiMed)

  • Gang Niu

    (Chinese Academy of Science)

  • Qiangzu Zhang

    (Chinese Academy of Science)

  • Jianglong Guo

    (Shanghai Jiao Tong University School of Medicine)

  • Zhen Sun

    (Shanghai Jiao Tong University School of Medicine)

  • Fengxian Han

    (Second Military Medical University (Naval Medical University)
    University of Shanghai for Science and Technology)

  • Yunguang Li

    (Chinese Academy of Sciences)

  • Dong Gao

    (Chinese Academy of Sciences)

  • Haojie Jin

    (Shanghai Jiao Tong University School of Medicine)

  • Hongbo Yang

    (Fudan University)

  • Jing Li

    (Second Military Medical University (Naval Medical University)
    Second Military Medical University (Naval Medical University))

  • Gang Jin

    (Second Military Medical University (Naval Medical University))

Abstract

Putting pancreatic adenocarcinoma (PAAD) screening into perspective for high-risk individuals could significantly reduce cancer morbidity and mortality. Previous studies have profiled somatic mutations in PAAD. In contrast, the prevalence of mutations in PAAD predisposition genes has not been defined, especially in the Asian population. Using a multi-tier cohort design and whole genome/exome sequencing, we create a comprehensive germline mutation map of PAAD in 1,123 Chinese cancer patients in comparison with 11 pan-ethnic studies. For well-known pathogenic/likely pathogenic germline variants, Chinese patients exhibit overlapping but distinct germline mutation patterns comparing with Western cohorts, highlighted by lower mutation rates in known PAAD genes including BRCA1, BRCA2, ATM, CDKN2A, and CHEK2, and distinct mutations in CFTR, RAD51D, FANCA, ERCC2, and GNAS exclusive to Chinese patients. CFTR emerges as a top candidate gene following loss of heterozygosity analysis. Using an integrative multi-omics and functional validation paradigm, we discover that deleterious variants of uncertain significance may compromise CFTR’s tumor suppressor function, and demonstrate the clinical relevance by using patient derived organoids for drug screen. Our multifaceted approach not only deepens the knowledge of population differences in PAAD germline mutations but also unveils potential avenues for targeted therapeutic interventions.

Suggested Citation

  • Xiaoyi Yin & Hui Shen & Huan Wang & Qingchen Wang & Shan Zhang & Chunming Zhang & Qi Jia & Shiwei Guo & Xiongfei Xu & Wenhui Zhang & Bo Li & Xiaohan Shi & Suizhi Gao & Meilong Shi & Xuenan Zhao & Shen, 2025. "Pathogenic germline variants in Chinese pancreatic adenocarcinoma patients," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57520-3
    DOI: 10.1038/s41467-025-57520-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57520-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57520-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J.Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Red, 2012. "Addendum: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 492(7428), pages 290-290, December.
    2. Xuchu Que & Ming-Yow Hung & Calvin Yeang & Ayelet Gonen & Thomas A. Prohaska & Xiaoli Sun & Cody Diehl & Antti Määttä & Dalia E. Gaddis & Karen Bowden & Jennifer Pattison & Jeffrey G. MacDonald & Sepp, 2018. "Publisher Correction: Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice," Nature, Nature, vol. 561(7724), pages 43-43, September.
    3. Xiaohan Shi & Yunguang Li & Qiuyue Yuan & Shijie Tang & Shiwei Guo & Yehan Zhang & Juan He & Xiaoyu Zhang & Ming Han & Zhuang Liu & Yiqin Zhu & Suizhi Gao & Huan Wang & Xiongfei Xu & Kailian Zheng & W, 2022. "Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility features associated with drug sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J. Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Re, 2012. "The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 483(7391), pages 603-607, March.
    5. Aldo Scarpa & David K. Chang & Katia Nones & Vincenzo Corbo & Ann-Marie Patch & Peter Bailey & Rita T. Lawlor & Amber L. Johns & David K. Miller & Andrea Mafficini & Borislav Rusev & Maria Scardoni & , 2017. "Whole-genome landscape of pancreatic neuroendocrine tumours," Nature, Nature, vol. 543(7643), pages 65-71, March.
    6. Xuchu Que & Ming-Yow Hung & Calvin Yeang & Ayelet Gonen & Thomas A. Prohaska & Xiaoli Sun & Cody Diehl & Antti Määttä & Dalia E. Gaddis & Karen Bowden & Jennifer Pattison & Jeffrey G. MacDonald & Sepp, 2018. "Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice," Nature, Nature, vol. 558(7709), pages 301-306, June.
    7. Charles Lu & Mingchao Xie & Michael C. Wendl & Jiayin Wang & Michael D. McLellan & Mark D. M. Leiserson & Kuan-lin Huang & Matthew A. Wyczalkowski & Reyka Jayasinghe & Tapahsama Banerjee & Jie Ning & , 2015. "Patterns and functional implications of rare germline variants across 12 cancer types," Nature Communications, Nature, vol. 6(1), pages 1-13, December.
    8. Andrew V. Biankin & Nicola Waddell & Karin S. Kassahn & Marie-Claude Gingras & Lakshmi B. Muthuswamy & Amber L. Johns & David K. Miller & Peter J. Wilson & Ann-Marie Patch & Jianmin Wu & David K. Chan, 2012. "Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes," Nature, Nature, vol. 491(7424), pages 399-405, November.
    9. Nazneen Rahman, 2014. "Realizing the promise of cancer predisposition genes," Nature, Nature, vol. 505(7483), pages 302-308, January.
    10. Nazneen Rahman, 2014. "Correction: Corrigendum: Realizing the promise of cancer predisposition genes," Nature, Nature, vol. 510(7503), pages 176-176, June.
    11. Peter Bailey & David K. Chang & Katia Nones & Amber L. Johns & Ann-Marie Patch & Marie-Claude Gingras & David K. Miller & Angelika N. Christ & Tim J. C. Bruxner & Michael C. Quinn & Craig Nourse & L. , 2016. "Genomic analyses identify molecular subtypes of pancreatic cancer," Nature, Nature, vol. 531(7592), pages 47-52, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisa Veghini & Davide Pasini & Rui Fang & Pietro Delfino & Dea Filippini & Christian Neander & Caterina Vicentini & Elena Fiorini & Francesca Lupo & Sabrina L. D’Agosto & Carmine Carbone & Antonio Ago, 2024. "Differential activity of MAPK signalling defines fibroblast subtypes in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Jurica Levatić & Marina Salvadores & Francisco Fuster-Tormo & Fran Supek, 2022. "Mutational signatures are markers of drug sensitivity of cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Seungyeul Yoo & Abhilasha Sinha & Dawei Yang & Nasser K. Altorki & Radhika Tandon & Wenhui Wang & Deebly Chavez & Eunjee Lee & Ayushi S. Patel & Takashi Sato & Ranran Kong & Bisen Ding & Eric E. Schad, 2022. "Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Sebastien Martinez & Shifei Wu & Michael Geuenich & Ahmad Malik & Ramona Weber & Tristan Woo & Amy Zhang & Gun Ho Jang & Dzana Dervovic & Khalid N. Al-Zahrani & Ricky Tsai & Nassima Fodil & Philippe G, 2024. "In vivo CRISPR screens reveal SCAF1 and USP15 as drivers of pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Alon Stern & Mariam Fokra & Boris Sarvin & Ahmad Abed Alrahem & Won Dong Lee & Elina Aizenshtein & Nikita Sarvin & Tomer Shlomi, 2023. "Inferring mitochondrial and cytosolic metabolism by coupling isotope tracing and deconvolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Yanli Liu & Zhong Wu & Jin Zhou & Dinesh K. A. Ramadurai & Katelyn L. Mortenson & Estrella Aguilera-Jimenez & Yifei Yan & Xiaojun Yang & Alison M. Taylor & Katherine E. Varley & Jason Gertz & Peter S., 2021. "A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. James T. Topham & Erica S. Tsang & Joanna M. Karasinska & Andrew Metcalfe & Hassan Ali & Steve E. Kalloger & Veronika Csizmok & Laura M. Williamson & Emma Titmuss & Karina Nielsen & Gian Luca Negri & , 2022. "Integrative analysis of KRAS wildtype metastatic pancreatic ductal adenocarcinoma reveals mutation and expression-based similarities to cholangiocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Sayantani Ghosh Dastidar & Bony Kumar & Bo Lauckner & Damien Parrello & Danielle Perley & Maria Vlasenok & Antariksh Tyagi & Nii Koney-Kwaku Koney & Ata Abbas & Sergei Nechaev, 2023. "Transcriptional responses of cancer cells to heat shock-inducing stimuli involve amplification of robust HSF1 binding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Cemal Erdem & Sean M. Gross & Laura M. Heiser & Marc R. Birtwistle, 2023. "MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Ulrik Kristoffer Stoltze & Jon Foss-Skiftesvik & Thomas van Overeem Hansen & Simon Rasmussen & Konrad J. Karczewski & Karin A. W. Wadt & Kjeld Schmiegelow, 2024. "The evolutionary impact of childhood cancer on the human gene pool," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Felicity J. Ashcroft & Asimina Bourboula & Nur Mahammad & Efrosini Barbayianni & Astrid J. Feuerherm & Thanh Thuy Nguyen & Daiki Hayashi & Maroula G. Kokotou & Konstantinos Alevizopoulos & Edward A. D, 2025. "Next generation thiazolyl ketone inhibitors of cytosolic phospholipase A2 α for targeted cancer therapy," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    13. Guidantonio Malagoli Tagliazucchi & Anna J. Wiecek & Eloise Withnell & Maria Secrier, 2023. "Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Souleymane Abdoul-Azize & Rihab Hami & Gaetan Riou & Céline Derambure & Camille Charbonnier & Jean-Pierre Vannier & Monica L. Guzman & Pascale Schneider & Olivier Boyer, 2024. "Glucocorticoids paradoxically promote steroid resistance in B cell acute lymphoblastic leukemia through CXCR4/PLC signaling," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    15. Michael Kugler & Felix J. Metzner & Gregor Witte & Karl-Peter Hopfner & Katja Lammens, 2024. "Phosphorylation-mediated conformational change regulates human SLFN11," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Philip East & Gavin P. Kelly & Dhruva Biswas & Michela Marani & David C. Hancock & Todd Creasy & Kris Sachsenmeier & Charles Swanton & Julian Downward & Sophie de Carné Trécesson, 2022. "RAS oncogenic activity predicts response to chemotherapy and outcome in lung adenocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Caterina Bartolacci & Cristina Andreani & Gonçalo Vale & Stefano Berto & Margherita Melegari & Anna Colleen Crouch & Dodge L. Baluya & George Kemble & Kurt Hodges & Jacqueline Starrett & Katerina Poli, 2022. "Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Sanju Sinha & Karina Barbosa & Kuoyuan Cheng & Mark D. M. Leiserson & Prashant Jain & Anagha Deshpande & David M. Wilson & Bríd M. Ryan & Ji Luo & Ze’ev A. Ronai & Joo Sang Lee & Aniruddha J. Deshpand, 2021. "A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    19. Carolin Ector & Christoph Schmal & Jeff Didier & Sébastien De Landtsheer & Anna-Marie Finger & Francesca Müller-Marquardt & Johannes H. Schulte & Thomas Sauter & Ulrich Keilholz & Hanspeter Herzel & A, 2024. "Time-of-day effects of cancer drugs revealed by high-throughput deep phenotyping," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Zheqi Li & Olivia McGinn & Yang Wu & Amir Bahreini & Nolan M. Priedigkeit & Kai Ding & Sayali Onkar & Caleb Lampenfeld & Carol A. Sartorius & Lori Miller & Margaret Rosenzweig & Ofir Cohen & Nikhil Wa, 2022. "ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57520-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.