IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57456-8.html
   My bibliography  Save this article

A CPC-shelterin-BTR axis regulates mitotic telomere deprotection

Author

Listed:
  • Diana Romero-Zamora

    (Kyoto University
    Kyoto University)

  • Samuel Rogers

    (University of Sydney)

  • Ronnie Ren Jie Low

    (University of Sydney)

  • Scott G. Page

    (University of Sydney)

  • Blake J. E. Lane

    (University of Sydney)

  • Shunya Kosaka

    (Kyoto University
    Kyoto University)

  • Andrew B. Robinson

    (University of Sydney)

  • Lucy French

    (University of Sydney)

  • Noa Lamm

    (University of Sydney)

  • Fuyuki Ishikawa

    (Kyoto University)

  • Makoto T. Hayashi

    (Kyoto University
    Kyoto University
    The AIRC Institute of Molecular Oncology)

  • Anthony J. Cesare

    (University of Sydney)

Abstract

Telomeres prevent ATM activation by sequestering chromosome termini within telomere loops (t-loops). Mitotic arrest promotes telomere linearity and a localized ATM-dependent telomere DNA damage response (DDR) through an unknown mechanism. Using unbiased interactomics, biochemical screening, molecular biology, and super-resolution imaging, we found that mitotic arrest-dependent (MAD) telomere deprotection requires the combined activities of the Chromosome passenger complex (CPC) on shelterin, and the BLM-TOP3A-RMI1/2 (BTR) complex on t-loops. During mitotic arrest, the CPC component Aurora Kinase B (AURKB) phosphorylated both the TRF1 hinge and TRF2 basic domains. Phosphorylation of the TRF1 hinge domain enhances CPC and TRF1 interaction through the CPC Survivin subunit. Meanwhile, phosphorylation of the TRF2 basic domain promotes telomere linearity, activates a telomere DDR dependent on BTR-mediated double Holliday junction dissolution, and leads to mitotic death. We identify that the TRF2 basic domain functions in mitosis-specific telomere protection and reveal a regulatory role for TRF1 in controlling a physiological ATM-dependent telomere DDR. The data demonstrate that MAD telomere deprotection is a sophisticated active mechanism that exposes telomere ends to signal mitotic stress.

Suggested Citation

  • Diana Romero-Zamora & Samuel Rogers & Ronnie Ren Jie Low & Scott G. Page & Blake J. E. Lane & Shunya Kosaka & Andrew B. Robinson & Lucy French & Noa Lamm & Fuyuki Ishikawa & Makoto T. Hayashi & Anthon, 2025. "A CPC-shelterin-BTR axis regulates mitotic telomere deprotection," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57456-8
    DOI: 10.1038/s41467-025-57456-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57456-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57456-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joe Nassour & Lucia Gutierrez Aguiar & Adriana Correia & Tobias T. Schmidt & Laura Mainz & Sara Przetocka & Candy Haggblom & Nimesha Tadepalle & April Williams & Maxim N. Shokhirev & Semih C. Akincila, 2023. "Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis," Nature, Nature, vol. 614(7949), pages 767-773, February.
    2. Phil Ruis & David Ly & Valerie Borel & Georgia R. Kafer & Afshan McCarthy & Steven Howell & Robert Blassberg & Ambrosius P. Snijders & James Briscoe & Kathy K. Niakan & Paulina Marzec & Anthony J. Ces, 2021. "TRF2-independent chromosome end protection during pluripotency," Nature, Nature, vol. 589(7840), pages 103-109, January.
    3. Marta Markiewicz-Potoczny & Anastasia Lobanova & Anisha M. Loeb & Oktay Kirak & Teresa Olbrich & Sergio Ruiz & Eros Lazzerini Denchi, 2021. "TRF2-mediated telomere protection is dispensable in pluripotent stem cells," Nature, Nature, vol. 589(7840), pages 110-115, January.
    4. Grzegorz Sarek & Panagiotis Kotsantis & Phil Ruis & David Van Ly & Pol Margalef & Valerie Borel & Xiao-Feng Zheng & Helen R. Flynn & Ambrosius P. Snijders & Dipanjan Chowdhury & Anthony J. Cesare & Si, 2019. "CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle," Nature, Nature, vol. 575(7783), pages 523-527, November.
    5. Keiji Okamoto & Cristina Bartocci & Iliana Ouzounov & Jolene K. Diedrich & John R. Yates III & Eros Lazzerini Denchi, 2013. "A two-step mechanism for TRF2-mediated chromosome-end protection," Nature, Nature, vol. 494(7438), pages 502-505, February.
    6. Makoto T. Hayashi & Anthony J. Cesare & Teresa Rivera & Jan Karlseder, 2015. "Cell death during crisis is mediated by mitotic telomere deprotection," Nature, Nature, vol. 522(7557), pages 492-496, June.
    7. Joe Nassour & Robert Radford & Adriana Correia & Javier Miralles Fusté & Brigitte Schoell & Anna Jauch & Reuben J. Shaw & Jan Karlseder, 2019. "Autophagic cell death restricts chromosomal instability during replicative crisis," Nature, Nature, vol. 565(7741), pages 659-663, January.
    8. V. Pragathi Masamsetti & Ronnie Ren Jie Low & Ka Sin Mak & Aisling O’Connor & Chris D. Riffkin & Noa Lamm & Laure Crabbe & Jan Karlseder & David C. S. Huang & Makoto T. Hayashi & Anthony J. Cesare, 2019. "Replication stress induces mitotic death through parallel pathways regulated by WAPL and telomere deprotection," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    9. Megan McKerlie & Xu-Dong Zhu, 2011. "Cyclin B-dependent kinase 1 regulates human TRF1 to modulate the resolution of sister telomeres," Nature Communications, Nature, vol. 2(1), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy K. Turkalo & Antonio Maffia & Johannes J. Schabort & Samuel G. Regalado & Mital Bhakta & Marco Blanchette & Diana C. J. Spierings & Peter M. Lansdorp & Dirk Hockemeyer, 2023. "A non-genetic switch triggers alternative telomere lengthening and cellular immortalization in ATRX deficient cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Rishi Kumar Nageshan & Raquel Ortega & Nevan Krogan & Julia Promisel Cooper, 2024. "Fate of telomere entanglements is dictated by the timing of anaphase midregion nuclear envelope breakdown," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Tobias T. Schmidt & Carly Tyer & Preeyesh Rughani & Candy Haggblom & Jeffrey R. Jones & Xiaoguang Dai & Kelly A. Frazer & Fred H. Gage & Sissel Juul & Scott Hickey & Jan Karlseder, 2024. "High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    5. Fei Li & Yizhe Wang & Inah Hwang & Ja-Young Jang & Libo Xu & Zhong Deng & Eun Young Yu & Yiming Cai & Caizhi Wu & Zhenbo Han & Yu-Han Huang & Xiangao Huang & Ling Zhang & Jun Yao & Neal F. Lue & Paul , 2023. "Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Mariarosaria Rosa & Ryan P. Barnes & Ariana C. Detwiler & Prasanth R. Nyalapatla & Peter Wipf & Patricia L. Opresko, 2025. "OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    7. Natthakan Thongon & Feiyang Ma & Andrea Santoni & Matteo Marchesini & Elena Fiorini & Ashley Rose & Vera Adema & Irene Ganan-Gomez & Emma M. Groarke & Fernanda Gutierrez-Rodrigues & Shuaitong Chen & P, 2021. "Hematopoiesis under telomere attrition at the single-cell resolution," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Tomoko Yamamori Morita & Jie Yu & Yukie Kashima & Ryo Kamata & Gaku Yamamoto & Tatsunori Minamide & Chiaki Mashima & Miyuki Yoshiya & Yuta Sakae & Toyohiro Yamauchi & Yumi Hakozaki & Shun-ichiro Kagey, 2023. "CDC7 inhibition induces replication stress-mediated aneuploid cells with an inflammatory phenotype sensitizing tumors to immune checkpoint blockade," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Shrestha Ghosh & Mileena T. Nguyen & Ha Eun Choi & Maximilian Stahl & Annemarie Luise Kühn & Sandra Auwera & Hans J. Grabe & Henry Völzke & Georg Homuth & Samuel A. Myers & Cory M. Hogaboam & Imre Not, 2024. "RIOK2 transcriptionally regulates TRiC and dyskerin complexes to prevent telomere shortening," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Sile F. Yang & Christopher B. Nelson & Jadon K. Wells & Madushan Fernando & Robert Lu & Joshua A. M. Allen & Lisa Malloy & Noa Lamm & Vincent J. Murphy & Joel P. Mackay & Andrew J. Deans & Anthony J. , 2024. "ZNF827 is a single-stranded DNA binding protein that regulates the ATR-CHK1 DNA damage response pathway," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Santiago E. Sanchez & Yuchao Gu & Yan Wang & Anudeep Golla & Annika Martin & William Shomali & Dirk Hockemeyer & Sharon A. Savage & Steven E. Artandi, 2024. "Digital telomere measurement by long-read sequencing distinguishes healthy aging from disease," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57456-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.