IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57399-0.html
   My bibliography  Save this article

Mitochondria are positioned at dendritic branch induction sites, a process requiring rhotekin2 and syndapin I

Author

Listed:
  • Jessica Tröger

    (Jena University Hospital - Friedrich Schiller University Jena)

  • Regina Dahlhaus

    (Jena University Hospital - Friedrich Schiller University Jena
    Danube Private University)

  • Anne Bayrhammer

    (Jena University Hospital - Friedrich Schiller University Jena)

  • Dennis Koch

    (Jena University Hospital - Friedrich Schiller University Jena)

  • Michael M. Kessels

    (Jena University Hospital - Friedrich Schiller University Jena)

  • Britta Qualmann

    (Jena University Hospital - Friedrich Schiller University Jena)

Abstract

Proper neuronal development, function and survival critically rely on mitochondrial functions. Yet, how developing neurons ensure spatiotemporal distribution of mitochondria during expansion of their dendritic arbor remained unclear. We demonstrate the existence of effective mitochondrial positioning and tethering mechanisms during dendritic arborization. We identify rhotekin2 as outer mitochondrial membrane-associated protein that tethers mitochondria to dendritic branch induction sites. Rhotekin2-deficient neurons failed to correctly position mitochondria at these sites and also lacked the reduction in mitochondrial dynamics observed at wild-type nascent dendritic branch sites. Rhotekin2 hereby serves as important anchor for the plasma membrane-binding and membrane curvature-inducing F-BAR protein syndapin I (PACSIN1). Consistently, syndapin I loss-of-function phenocopied the rhotekin2 loss-of-function phenotype in mitochondrial positioning at dendritic branch induction sites. The finding that rhotekin2 deficiency impaired dendritic branch induction and that a syndapin binding-deficient rhotekin2 mutant failed to rescue this phenotype highlighted the physiological importance of rhotekin2 functions for neuronal network formation.

Suggested Citation

  • Jessica Tröger & Regina Dahlhaus & Anne Bayrhammer & Dennis Koch & Michael M. Kessels & Britta Qualmann, 2025. "Mitochondria are positioned at dendritic branch induction sites, a process requiring rhotekin2 and syndapin I," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57399-0
    DOI: 10.1038/s41467-025-57399-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57399-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57399-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason E. Lee & Laura M. Westrate & Haoxi Wu & Cynthia Page & Gia K. Voeltz, 2016. "Multiple dynamin family members collaborate to drive mitochondrial division," Nature, Nature, vol. 540(7631), pages 139-143, December.
    2. Jyh-Ying Peng & Chung-Chih Lin & Yen-Jen Chen & Lung-Sen Kao & Young-Chau Liu & Chung-Chien Chou & Yi-Hung Huang & Fang-Rong Chang & Yang-Chang Wu & Yuh-Show Tsai & Chun-Nan Hsu, 2011. "Automatic Morphological Subtyping Reveals New Roles of Caspases in Mitochondrial Dynamics," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-14, October.
    3. Bongki Cho & Hyo Min Cho & Youhwa Jo & Hee Dae Kim & Myungjae Song & Cheil Moon & Hyongbum Kim & Kyungjin Kim & Hiromi Sesaki & Im Joo Rhyu & Hyun Kim & Woong Sun, 2017. "Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division," Nature Communications, Nature, vol. 8(1), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erminia Donnarumma & Michael Kohlhaas & Elodie Vimont & Etienne Kornobis & Thibault Chaze & Quentin Giai Gianetto & Mariette Matondo & Maryse Moya-Nilges & Christoph Maack & Timothy Wai, 2022. "Mitochondrial Fission Process 1 controls inner membrane integrity and protects against heart failure," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    2. Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Daniel M. Virga & Stevie Hamilton & Bertha Osei & Abigail Morgan & Parker Kneis & Emiliano Zamponi & Natalie J. Park & Victoria L. Hewitt & David Zhang & Kevin C. Gonzalez & Fiona M. Russell & D. Grah, 2024. "Activity-dependent compartmentalization of dendritic mitochondria morphology through local regulation of fusion-fission balance in neurons in vivo," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Russell K. W. Spencer & Isaac Santos-Pérez & Izaro Rodríguez-Renovales & Juan Manuel Martinez Galvez & Anna V. Shnyrova & Marcus Müller, 2024. "Membrane fission via transmembrane contact," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Joshua G. Pemberton & Krishnendu Roy & Yeun Ju Kim & Tara D. Fischer & Vijay Joshi & Elizabeth Ferrer & Richard J. Youle & Thomas J. Pucadyil & Tamas Balla, 2025. "Acute diacylglycerol production activates critical membrane-shaping proteins leading to mitochondrial tubulation and fission," Nature Communications, Nature, vol. 16(1), pages 1-25, December.
    6. Mathieu Ouellet & Gérald Guillebaud & Valerie Gervais & David Lupien St-Pierre & Marc Germain, 2017. "A novel algorithm identifies stress-induced alterations in mitochondrial connectivity and inner membrane structure from confocal images," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-23, June.
    7. Davide G. Franchina & Henry Kurniawan & Melanie Grusdat & Carole Binsfeld & Luana Guerra & Lynn Bonetti & Leticia Soriano-Baguet & Anouk Ewen & Takumi Kobayashi & Sophie Farinelle & Anna Rita Minafra , 2022. "Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells," Nature Communications, Nature, vol. 13(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57399-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.