Cortical representations of affective pain shape empathic fear in male mice
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-025-57230-w
Download full text from publisher
References listed on IDEAS
- Ziyan Huang & Myung Chung & Kentaro Tao & Akiyuki Watarai & Mu-Yun Wang & Hiroh Ito & Teruhiro Okuyama, 2023. "Ventromedial prefrontal neurons represent self-states shaped by vicarious fear in male mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Tetsuya Sakaguchi & Satoshi Iwasaki & Mami Okada & Kazuki Okamoto & Yuji Ikegaya, 2018. "Ethanol facilitates socially evoked memory recall in mice by recruiting pain-sensitive anterior cingulate cortical neurons," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
- Chong Chen & Jesse K. Niehaus & Fatih Dinc & Karen L. Huang & Alexander L. Barnette & Adrien Tassou & S. Andrew Shuster & Lihua Wang & Andrew Lemire & Vilas Menon & Kimberly Ritola & Adam W. Hantman &, 2024. "Neural circuit basis of placebo pain relief," Nature, Nature, vol. 632(8027), pages 1092-1100, August.
- Marc T. Pisansky & Leah R. Hanson & Irving I. Gottesman & Jonathan C. Gewirtz, 2017. "Oxytocin enhances observational fear in mice," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
- Patricia H. Janak & Kay M. Tye, 2015. "From circuits to behaviour in the amygdala," Nature, Nature, vol. 517(7534), pages 284-292, January.
- Jan Haaker & Jonathan Yi & Predrag Petrovic & Andreas Olsson, 2017. "Endogenous opioids regulate social threat learning in humans," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
- Shana E. Silverstein & Ruairi O’Sullivan & Olena Bukalo & Dipanwita Pati & Julia A. Schaffer & Aaron Limoges & Leo Zsembik & Takayuki Yoshida & John J. O’Malley & Ronald F. Paletzki & Abby G. Lieberma, 2024. "A distinct cortical code for socially learned threat," Nature, Nature, vol. 626(8001), pages 1066-1072, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fabian Grabenhorst & Raymundo Báez-Mendoza, 2025. "Dynamic coding and sequential integration of multiple reward attributes by primate amygdala neurons," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
- Xiaoyi Wang & Shangyu Bi & Ziteng Yue & Xinxin Chen & Yuhang Liu & Tianjiao Deng & Liuqi Shao & Xinyi Jing & Cuidie Wang & Yakun Wang & Wei He & Hongxiao Yu & Luo Shi & Fang Yuan & Sheng Wang, 2025. "GABAergic neurons in central amygdala contribute to orchestrating anxiety-like behaviors and breathing patterns," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
- Huiling Yu & Liping Chen & Huiyang Lei & Guilin Pi & Rui Xiong & Tao Jiang & Dongqin Wu & Fei Sun & Yang Gao & Yuanhao Li & Wenju Peng & Bingyu Huang & Guoda Song & Xin Wang & Jingru Lv & Zetao Jin & , 2022. "Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Nozomu H. Nakamura & Hidemasa Furue & Kenta Kobayashi & Yoshitaka Oku, 2023. "Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Ren-Wen Han & Zi-Yi Zhang & Chen Jiao & Ze-Yu Hu & Bing-Xing Pan, 2024. "Synergism between two BLA-to-BNST pathways for appropriate expression of anxiety-like behaviors in male mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Mariusz Mucha & Anna E. Skrzypiec & Jaison B. Kolenchery & Valentina Brambilla & Satyam Patel & Alberto Labrador-Ramos & Lucja Kudla & Kathryn Murrall & Nathan Skene & Violetta Dymicka-Piekarska & Aga, 2023. "miR-483-5p offsets functional and behavioural effects of stress in male mice through synapse-targeted repression of Pgap2 in the basolateral amygdala," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Jong-Hyun Kim & Da-Eun Choi & Hee-Sup Shin, 2025. "The lateralized LC-NAergic system distinguishes vicarious versus direct fear in mice," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
- Feng Zhou & Weihua Zhao & Ziyu Qi & Yayuan Geng & Shuxia Yao & Keith M. Kendrick & Tor D. Wager & Benjamin Becker, 2021. "A distributed fMRI-based signature for the subjective experience of fear," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
- Dheeraj S. Roy & Young-Gyun Park & Minyoung E. Kim & Ying Zhang & Sachie K. Ogawa & Nicholas DiNapoli & Xinyi Gu & Jae H. Cho & Heejin Choi & Lee Kamentsky & Jared Martin & Olivia Mosto & Tomomi Aida , 2022. "Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- In Bum Lee & Eugene Lee & Na-Eun Han & Marko Slavuj & Jeong Wook Hwang & Ahrim Lee & Taeyoung Sun & Yehwan Jeong & Ja-Hyun Baik & Jae-Yong Park & Se-Young Choi & Jeehyun Kwag & Bong-June Yoon, 2024. "Persistent enhancement of basolateral amygdala-dorsomedial striatum synapses causes compulsive-like behaviors in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Ziyan Huang & Myung Chung & Kentaro Tao & Akiyuki Watarai & Mu-Yun Wang & Hiroh Ito & Teruhiro Okuyama, 2023. "Ventromedial prefrontal neurons represent self-states shaped by vicarious fear in male mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Federica Fermani & Simon Chang & Ylenia Mastrodicasa & Christian Peters & Louise Gaitanos & Pilar L. Alcala Morales & Charu Ramakrishnan & Karl Deisseroth & Rüdiger Klein, 2025. "Food and water intake are regulated by distinct central amygdala circuits revealed using intersectional genetics," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
- Carole Morel & Sarah E. Montgomery & Long Li & Romain Durand-de Cuttoli & Emily M. Teichman & Barbara Juarez & Nikos Tzavaras & Stacy M. Ku & Meghan E. Flanigan & Min Cai & Jessica J. Walsh & Scott J., 2022. "Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Gayane Aghakhanyan & Paolo Bonanni & Giovanna Randazzo & Sara Nappi & Federica Tessarotto & Lara De Martin & Francesca Frijia & Daniele De Marchi & Francesco De Masi & Beate Kuppers & Francesco Lombar, 2016. "From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
- Lahti, Tom & Halko, Marja-Liisa & Karagozoglu, Necmi & Wincent, Joakim, 2019. "Why and how do founding entrepreneurs bond with their ventures? Neural correlates of entrepreneurial and parental bonding," Journal of Business Venturing, Elsevier, vol. 34(2), pages 368-388.
- Lihong Yan & Xin Zhang & Liling Jin & Yin Li & Yang Chen & Jubiao Zhang & Zhenning Sun & Junxia Qi & Changqing Qu & Guanzhong Dong & Yongjie Zhang & Qin Jiang & An Liu & Juxue Li, 2025. "The ARCCRABP1 neurons play a crucial role in the regulation of energy homeostasis," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
- Kazuhisa Shibata & Takeo Watanabe & Mitsuo Kawato & Yuka Sasaki, 2016. "Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-27, September.
- Hansol Lim & Yue Zhang & Christian Peters & Tobias Straub & Johanna Luise Mayer & Rüdiger Klein, 2024. "Genetically- and spatially-defined basolateral amygdala neurons control food consumption and social interaction," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
- Owen Y. Chao & Salil Saurav Pathak & Hao Zhang & George J. Augustine & Jason M. Christie & Chikako Kikuchi & Hiroki Taniguchi & Yi-Mei Yang, 2023. "Social memory deficit caused by dysregulation of the cerebellar vermis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57230-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.