IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57154-5.html
   My bibliography  Save this article

Improving adenine base editing precision by enlarging the recognition domain of CRISPR-Cas9

Author

Listed:
  • Shuliang Gao

    (Tufts University)

  • Benson Weng

    (Tufts University)

  • Douglas Wich

    (Tufts University)

  • Liam Power

    (Tufts University)

  • Mengting Chen

    (Tufts University)

  • Huiwen Guan

    (Tufts University)

  • Zhongfeng Ye

    (Tufts University)

  • Chutian Xu

    (Tufts University)

  • Qiaobing Xu

    (Tufts University)

Abstract

Domain expansion contributes to diversification of RNA-guided-endonucleases including Cas9. However, it remains unclear how REC domain expansion could benefit Cas9. In this study, we identify an insertion spot that is compatible with large REC insertion and succeeds in enlarging the non-catalytic REC domain of Streptococcus pyogenes Cas9. The natural-evolution-like giant SpCas9 (GS-Cas9) is created and shows substantially improved editing precision. We further discover that enlarging the REC domain could enable regulation of the N-terminal adenine deaminase TadA8e tethered to the Cas9 scaffold, which contributes to substantially reducing unexpected editing and improving the precision of the adenine base editor ABE8e. We provide proof of concept for evolution-inspired expansion of Cas9 and offer an alternative solution for optimizing gene editors. Our study also indicates a vast potential for engineering the topological malleability of RNA-guided endonucleases and base editors.

Suggested Citation

  • Shuliang Gao & Benson Weng & Douglas Wich & Liam Power & Mengting Chen & Huiwen Guan & Zhongfeng Ye & Chutian Xu & Qiaobing Xu, 2025. "Improving adenine base editing precision by enlarging the recognition domain of CRISPR-Cas9," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57154-5
    DOI: 10.1038/s41467-025-57154-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57154-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57154-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kiran Musunuru & Alexandra C. Chadwick & Taiji Mizoguchi & Sara P. Garcia & Jamie E. DeNizio & Caroline W. Reiss & Kui Wang & Sowmya Iyer & Chaitali Dutta & Victoria Clendaniel & Michael Amaonye & Aar, 2021. "In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates," Nature, Nature, vol. 593(7859), pages 429-434, May.
    2. Hongzhi Zeng & Qichen Yuan & Fei Peng & Dacheng Ma & Ananya Lingineni & Kelly Chee & Peretz Gilberd & Emmanuel C. Osikpa & Zheng Sun & Xue Gao, 2023. "A split and inducible adenine base editor for precise in vivo base editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Makoto Saito & Peiyu Xu & Guilhem Faure & Samantha Maguire & Soumya Kannan & Han Altae-Tran & Sam Vo & AnAn Desimone & Rhiannon K. Macrae & Feng Zhang, 2023. "Fanzor is a eukaryotic programmable RNA-guided endonuclease," Nature, Nature, vol. 620(7974), pages 660-668, August.
    4. Shouyue Zhang & Ao Sun & Jing-Mei Qian & Shuo Lin & Wenjing Xing & Yun Yang & Han-Zhou Zhu & Xin-Yi Zhou & Yan-Shuo Guo & Yun Liu & Yu Meng & Shu-Lin Jin & Wenhao Song & Cheng-Ping Li & Zhaofu Li & Sh, 2024. "Pro-CRISPR PcrIIC1-associated Cas9 system for enhanced bacterial immunity," Nature, Nature, vol. 630(8016), pages 484-492, June.
    5. Yajing Liu & Changyang Zhou & Shisheng Huang & Lu Dang & Yu Wei & Jun He & Yingsi Zhou & Shaoshuai Mao & Wanyu Tao & Yu Zhang & Hui Yang & Xingxu Huang & Tian Chi, 2020. "A Cas-embedding strategy for minimizing off-target effects of DNA base editors," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Yuan Zhou & Chen Zhang & Weidong Xiao & Roland W. Herzog & Renzhi Han, 2024. "Systemic delivery of full-length dystrophin in Duchenne muscular dystrophy mice," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Michael Elowitz & Wendell A. Lim, 2010. "Build life to understand it," Nature, Nature, vol. 468(7326), pages 889-890, December.
    8. Janice S. Chen & Yavuz S. Dagdas & Benjamin P. Kleinstiver & Moira M. Welch & Alexander A. Sousa & Lucas B. Harrington & Samuel H. Sternberg & J. Keith Joung & Ahmet Yildiz & Jennifer A. Doudna, 2017. "Enhanced proofreading governs CRISPR–Cas9 targeting accuracy," Nature, Nature, vol. 550(7676), pages 407-410, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoling Li & Xue Dong & Jiamin Luo & Tanglong Yuan & Tong Li & Guoli Zhao & Hainan Zhang & Jingxing Zhou & Zhenhai Zeng & Shuna Cui & Haoqiang Wang & Yin Wang & Yuyang Yu & Yuan Yuan & Erwei Zuo & Chu, 2024. "Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Dmitrii Degtev & Jack Bravo & Aikaterini Emmanouilidi & Aleksandar Zdravković & Oi Kuan Choong & Julia Liz Touza & Niklas Selfjord & Isabel Weisheit & Margherita Francescatto & Pinar Akcakaya & Michel, 2024. "Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Jiajia Lin & Ming Jin & Dong Yang & Zhifang Li & Yu Zhang & Qingquan Xiao & Yin Wang & Yuyang Yu & Xiumei Zhang & Zhurui Shao & Linyu Shi & Shu Zhang & Wan-jin Chen & Ning Wang & Shiwen Wu & Hui Yang , 2024. "Adenine base editing-mediated exon skipping restores dystrophin in humanized Duchenne mouse model," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Guiquan Zhang & Yao Liu & Shisheng Huang & Shiyuan Qu & Daolin Cheng & Yuan Yao & Quanjiang Ji & Xiaolong Wang & Xingxu Huang & Jianghuai Liu, 2022. "Enhancement of prime editing via xrRNA motif-joined pegRNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Qinchang Chen & Guohui Chuai & Haihang Zhang & Jin Tang & Liwen Duan & Huan Guan & Wenhui Li & Wannian Li & Jiaying Wen & Erwei Zuo & Qing Zhang & Qi Liu, 2023. "Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Yue Xu & Shihao Ma & Haotian Cui & Jingan Chen & Shufen Xu & Fanglin Gong & Alex Golubovic & Muye Zhou & Kevin Chang Wang & Andrew Varley & Rick Xing Ze Lu & Bo Wang & Bowen Li, 2024. "AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Huawei Tong & Haoqiang Wang & Xuchen Wang & Nana Liu & Guoling Li & Danni Wu & Yun Li & Ming Jin & Hengbin Li & Yinghui Wei & Tong Li & Yuan Yuan & Linyu Shi & Xuan Yao & Yingsi Zhou & Hui Yang, 2024. "Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Sarah Laura Krausz & Ervin Welker, 2022. "SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Nathan Bamidele & Han Zhang & Xiaolong Dong & Haoyang Cheng & Nicholas Gaston & Hailey Feinzig & Hanbing Cao & Karen Kelly & Jonathan K. Watts & Jun Xie & Guangping Gao & Erik J. Sontheimer, 2024. "Domain-inlaid Nme2Cas9 adenine base editors with improved activity and targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. repec:plo:pone00:0043231 is not listed on IDEAS
    13. Duck Gyun Kim & Boncheol Gu & Yujin Cha & Jeonghan Ha & Yongjae Lee & Gahyeon Kim & Byung-Kwan Cho & Min-Kyu Oh, 2025. "Engineered CRISPR-Cas9 for Streptomyces sp. genome editing to improve specialized metabolite production," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    14. Xu Feng & Ruyi Xu & Jianglan Liao & Jingyu Zhao & Baochang Zhang & Xiaoxiao Xu & Pengpeng Zhao & Xiaoning Wang & Jianyun Yao & Pengxia Wang & Xiaoxue Wang & Wenyuan Han & Qunxin She, 2024. "Flexible TAM requirement of TnpB enables efficient single-nucleotide editing with expanded targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Yuting Chen & Eriona Hysolli & Anlu Chen & Stephen Casper & Songlei Liu & Kevin Yang & Chenli Liu & George Church, 2022. "Multiplex base editing to convert TAG into TAA codons in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Hongzhi Zeng & Qichen Yuan & Fei Peng & Dacheng Ma & Ananya Lingineni & Kelly Chee & Peretz Gilberd & Emmanuel C. Osikpa & Zheng Sun & Xue Gao, 2023. "A split and inducible adenine base editor for precise in vivo base editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    18. Hangu Nam & Keqiang Xie & Ishita Majumdar & Jiao Wang & Shaobo Yang & Jakob Starzyk & Danna Lee & Richard Shan & Jiahe Li & Hao Wu, 2025. "Engineering tripartite gene editing machinery for highly efficient non-viral targeted genome integration," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Giulia I. Corsi & Kunli Qu & Ferhat Alkan & Xiaoguang Pan & Yonglun Luo & Jan Gorodkin, 2022. "CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Zsolt Bodai & Alena L. Bishop & Valentino M. Gantz & Alexis C. Komor, 2022. "Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    21. Jie Yang & Tongyao Wang & Ying Huang & Zhaoyi Long & Xuzichao Li & Shuqin Zhang & Lingling Zhang & Zhikun Liu & Qian Zhang & Huabing Sun & Minjie Zhang & Hang Yin & Zhongmin Liu & Heng Zhang, 2025. "Insights into the compact CRISPR–Cas9d system," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57154-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.