IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57075-3.html
   My bibliography  Save this article

Structure of an F-type phage tail-like bacteriocin from Listeria monocytogenes

Author

Listed:
  • Zhiwei Gu

    (Tsinghua University)

  • Xiaofei Ge

    (City University of Macau)

  • Jiawei Wang

    (Tsinghua University)

Abstract

F-type phage tail-like bacteriocins (PTLBs) are high-molecular-weight protein complexes exhibiting bactericidal activity and share evolutionary similarities with the tails of non-contractile siphoviruses. In this study, we present the atomic structure of monocin, a genetically engineered F-type PTLB from Listeria monocytogenes. Our detailed atomic-level analysis, excluding two chaperone proteins, provides crucial insights into the molecular architecture of F-type PTLBs. The core structure of monocin resembles TP901-1-like phage tails, featuring three side fibers with receptor-binding domains that connect to the baseplate for host adhesion. Based on these findings, we propose a potential mechanism by which F-type PTLBs induce cell death, offering a foundation for developing targeted antibacterial therapies.

Suggested Citation

  • Zhiwei Gu & Xiaofei Ge & Jiawei Wang, 2025. "Structure of an F-type phage tail-like bacteriocin from Listeria monocytogenes," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57075-3
    DOI: 10.1038/s41467-025-57075-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57075-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57075-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuji Kanamaru & Petr G. Leiman & Victor A. Kostyuchenko & Paul R. Chipman & Vadim V. Mesyanzhinov & Fumio Arisaka & Michael G. Rossmann, 2002. "Structure of the cell-puncturing device of bacteriophage T4," Nature, Nature, vol. 415(6871), pages 553-557, January.
    2. Xiaoying Cai & Yao He & Iris Yu & Anthony Imani & Dean Scholl & Jeff F. Miller & Z. Hong Zhou, 2024. "Atomic structures of a bacteriocin targeting Gram-positive bacteria," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Peng Ge & Dean Scholl & Nikolai S. Prokhorov & Jaycob Avaylon & Mikhail M. Shneider & Christopher Browning & Sergey A. Buth & Michel Plattner & Urmi Chakraborty & Ke Ding & Petr G. Leiman & Jeff F. Mi, 2020. "Action of a minimal contractile bactericidal nanomachine," Nature, Nature, vol. 580(7805), pages 658-662, April.
    4. M. Basler & M. Pilhofer & G. P. Henderson & G. J. Jensen & J. J. Mekalanos, 2012. "Type VI secretion requires a dynamic contractile phage tail-like structure," Nature, Nature, vol. 483(7388), pages 182-186, March.
    5. Xiaofei Ge & Jiawei Wang, 2024. "Structural mechanism of bacteriophage lambda tail’s interaction with the bacterial receptor," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravi R. Sonani & Lee K. Palmer & Nathaniel C. Esteves & Abigail A. Horton & Amanda L. Sebastian & Rebecca J. Kelly & Fengbin Wang & Mark A. B. Kreutzberger & William K. Russell & Petr G. Leiman & Birg, 2024. "An extensive disulfide bond network prevents tail contraction in Agrobacterium tumefaciens phage Milano," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Latinovic, Zoran & Chatterjee, Sharmila C., 2022. "Achieving the promise of AI and ML in delivering economic and relational customer value in B2B," Journal of Business Research, Elsevier, vol. 144(C), pages 966-974.
    3. Brooke K. Hayes & Marina Harper & Hariprasad Venugopal & Jessica M. Lewis & Amy Wright & Han-Chung Lee & Joel R. Steele & David L. Steer & Ralf B. Schittenhelm & John D. Boyce & Sheena McGowan, 2024. "Structure of a Rhs effector clade domain provides mechanistic insights into type VI secretion system toxin delivery," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Xiaoying Cai & Yao He & Iris Yu & Anthony Imani & Dean Scholl & Jeff F. Miller & Z. Hong Zhou, 2024. "Atomic structures of a bacteriocin targeting Gram-positive bacteria," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Thibault R. Bongiovanni & Casey J. Latario & Youn Cras & Evan Trus & Sophie Robitaille & Kerry Swartz & Danica Schmidtke & Maxence Vincent & Artemis Kosta & Jan Orth & Florian Stengel & Riccardo Pella, 2024. "Assembly of a unique membrane complex in type VI secretion systems of Bacteroidota," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Ana Teresa López-Jiménez & Serge Mostowy, 2021. "Emerging technologies and infection models in cellular microbiology," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Steven J. Jensen & Bonnie J. Cuthbert & Fernando Garza-Sánchez & Colette C. Helou & Rodger Miranda & Celia W. Goulding & Christopher S. Hayes, 2024. "Advanced glycation end-product crosslinking activates a type VI secretion system phospholipase effector protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Fenglin Li & Chun-Feng David Hou & Ravi K. Lokareddy & Ruoyu Yang & Francesca Forti & Federica Briani & Gino Cingolani, 2023. "High-resolution cryo-EM structure of the Pseudomonas bacteriophage E217," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Rong-Cheng Yu & Feng Yang & Hong-Yan Zhang & Pu Hou & Kang Du & Jie Zhu & Ning Cui & Xudong Xu & Yuxing Chen & Qiong Li & Cong-Zhao Zhou, 2024. "Structure of the intact tail machine of Anabaena myophage A-1(L)," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Xiaofei Ge & Jiawei Wang, 2024. "Structural mechanism of bacteriophage lambda tail’s interaction with the bacterial receptor," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Katarzyna Kanarek & Chaya Mushka Fridman & Eran Bosis & Dor Salomon, 2023. "The RIX domain defines a class of polymorphic T6SS effectors and secreted adaptors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57075-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.