IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56487-5.html
   My bibliography  Save this article

Modulation of Co spin state at Co3O4 crystalline-amorphous interfaces for CO oxidation and N2O decomposition

Author

Listed:
  • Yunpeng Long

    (Tsinghua University)

  • Xiao Zhu

    (Tsinghua University)

  • Chuan Gao

    (Tsinghua University)

  • Wenzhe Si

    (Tsinghua University)

  • Junhua Li

    (Tsinghua University)

  • Yue Peng

    (Tsinghua University)

Abstract

Modulation of electronic spin states in cobalt-based catalysts is an effective strategy for molecule activations. Crystalline-amorphous interfaces often exhibit unique catalytic properties due to disruptions of long-range order and alterations in electronic structure. However, the mechanisms of molecule activation and spin states at interfaces remain elusive. Herein, we present a Co3O4 spinel-based catalyst featuring crystalline-amorphous interfaces. Characterization analyses confirm that tetrahedral Co2+ is selectively etched from bulk spinel, forming amorphous CoO islands on the surface. The resultant symmetry breaking in the coordination field induces a reconstruction of the Co3+ 3 d orbitals, leading to high-spin states. In CO oxidation, the interface serves as novel active sites with a lower energy barrier, facilitated by lattice oxygen activation. In N2O decomposition, the interface promotes reassociation of dissociated oxygen through quantum spin exchange interactions. This work provides a straightforward approach to modulating the spin state of interfaces and elucidates their role in molecule activations.

Suggested Citation

  • Yunpeng Long & Xiao Zhu & Chuan Gao & Wenzhe Si & Junhua Li & Yue Peng, 2025. "Modulation of Co spin state at Co3O4 crystalline-amorphous interfaces for CO oxidation and N2O decomposition," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56487-5
    DOI: 10.1038/s41467-025-56487-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56487-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56487-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Arno Bergmann & Elias Martinez-Moreno & Detre Teschner & Petko Chernev & Manuel Gliech & Jorge Ferreira de Araújo & Tobias Reier & Holger Dau & Peter Strasser, 2015. "Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    3. Sihong Wang & Qu Jiang & Shenghong Ju & Chia-Shuo Hsu & Hao Ming Chen & Di Zhang & Fang Song, 2022. "Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Juan Wang & Lili Han & Bolong Huang & Qi Shao & Huolin L. Xin & Xiaoqing Huang, 2019. "Amorphization activated ruthenium-tellurium nanorods for efficient water splitting," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. repec:cdl:itsdav:qt7qv6q35r is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Liu & Tao Ding & Lifeng Wang & Huijuan Zhang & Li Xu & Beibei Pang & Xiaokang Liu & Huijuan Wang & Junhui Wang & Kaifeng Wu & Tao Yao, 2023. "In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Felix T. Haase & Arno Bergmann & Travis E. Jones & Janis Timoshenko & Antonia Herzog & Hyo Sang Jeon & Clara Rettenmaier & Beatriz Roldan Cuenya, 2022. "Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction," Nature Energy, Nature, vol. 7(8), pages 765-773, August.
    3. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Ouwen Peng & Qikun Hu & Mengtian Jin & Mengyao Su & Jia Liu & Bo Li & Shibo Xi & Chun Cheng & Kian Ping Loh, 2025. "Hydroxyl and nitrate co-upgrading to oxime via anode-cathode cascade electrolyzer," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Huanyu Jin & Xinyan Liu & Pengfei An & Cheng Tang & Huimin Yu & Qinghua Zhang & Hong-Jie Peng & Lin Gu & Yao Zheng & Taeseup Song & Kenneth Davey & Ungyu Paik & Juncai Dong & Shi-Zhang Qiao, 2023. "Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Shangheng Liu & Shize Geng & Ling Li & Ying Zhang & Guomian Ren & Bolong Huang & Zhiwei Hu & Jyh-Fu Lee & Yu-Hong Lai & Ying-Hao Chu & Yong Xu & Qi Shao & Xiaoqing Huang, 2022. "A top-down strategy for amorphization of hydroxyl compounds for electrocatalytic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Shouwei Zuo & Zhi-Peng Wu & Deting Xu & Rafia Ahmad & Lirong Zheng & Jing Zhang & Lina Zhao & Wenhuan Huang & Hassan Al Qahtani & Yu Han & Luigi Cavallo & Huabin Zhang, 2024. "Local compressive strain-induced anti-corrosion over isolated Ru-decorated Co3O4 for efficient acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Yang, Gaoqiang & Mo, Jingke & Kang, Zhenye & Dohrmann, Yeshi & List, Frederick A. & Green, Johney B. & Babu, Sudarsanam S. & Zhang, Feng-Yuan, 2018. "Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting," Applied Energy, Elsevier, vol. 215(C), pages 202-210.
    9. Jaianth Vijayakumar & Tatiana M. Savchenko & David M. Bracher & Gunnar Lumbeeck & Armand Béché & Jo Verbeeck & Štefan Vajda & Frithjof Nolting & C.A.F. Vaz & Armin Kleibert, 2023. "Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Earl Matthew Davis & Arno Bergmann & Chao Zhan & Helmut Kuhlenbeck & Beatriz Roldan Cuenya, 2023. "Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Peiyu Ma & Jiawei Xue & Ji Li & Heng Cao & Ruyang Wang & Ming Zuo & Zhirong Zhang & Jun Bao, 2025. "Site-specific synergy in heterogeneous single atoms for efficient oxygen evolution," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    12. Sihong Wang & Qu Jiang & Shenghong Ju & Chia-Shuo Hsu & Hao Ming Chen & Di Zhang & Fang Song, 2022. "Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Yonggui Zhao & Nanchen Dongfang & Chong Huang & Rolf Erni & Jingguo Li & Han Zhao & Long Pan & Marcella Iannuzzi & Greta R. Patzke, 2025. "Operando monitoring of the functional role of tetrahedral cobalt centers for the oxygen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    14. Yubo Chen & Joon Kyo Seo & Yuanmiao Sun & Thomas A. Wynn & Marco Olguin & Minghao Zhang & Jingxian Wang & Shibo Xi & Yonghua Du & Kaidi Yuan & Wei Chen & Adrian C. Fisher & Maoyu Wang & Zhenxing Feng , 2022. "Enhanced oxygen evolution over dual corner-shared cobalt tetrahedra," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Tao Zhang & Hui-Feng Zhao & Zheng-Jie Chen & Qun Yang & Niu Gao & Li Li & Na Luo & Jian Zheng & Shi-Da Bao & Jing Peng & Xu Peng & Xin-Wang Liu & Hai-Bin Yu, 2025. "High-entropy alloy enables multi-path electron synergism and lattice oxygen activation for enhanced oxygen evolution activity," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56487-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.