IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51165-4.html
   My bibliography  Save this article

Deterministic grayscale nanotopography to engineer mobilities in strained MoS2 FETs

Author

Listed:
  • Xia Liu

    (École Polytechnique Fédérale de Lausanne (EPFL)
    Beijing Institute of Technology)

  • Berke Erbas

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Ana Conde-Rubio

    (École Polytechnique Fédérale de Lausanne (EPFL)
    Campus UAB)

  • Norma Rivano

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Zhenyu Wang

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Jin Jiang

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Siiri Bienz

    (ETH Zurich)

  • Naresh Kumar

    (ETH Zurich)

  • Thibault Sohier

    (Université de Montpellier, CNRS)

  • Marcos Penedo

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Mitali Banerjee

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Georg Fantner

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Renato Zenobi

    (ETH Zurich)

  • Nicola Marzari

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL)
    Paul Scherrer Institute)

  • Andras Kis

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Giovanni Boero

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Juergen Brugger

    (École Polytechnique Fédérale de Lausanne (EPFL))

Abstract

Field-effect transistors (FETs) based on two-dimensional materials (2DMs) with atomically thin channels have emerged as a promising platform for beyond-silicon electronics. However, low carrier mobility in 2DM transistors driven by phonon scattering remains a critical challenge. To address this issue, we propose the controlled introduction of localized tensile strain as an effective means to inhibit electron-phonon scattering in 2DM. Strain is achieved by conformally adhering the 2DM via van der Waals forces to a dielectric layer previously nanoengineered with a gray-tone topography. Our results show that monolayer MoS2 FETs under tensile strain achieve an 8-fold increase in on-state current, reaching mobilities of 185 cm²/Vs at room temperature, in good agreement with theoretical calculations. The present work on nanotopographic grayscale surface engineering and the use of high-quality dielectric materials has the potential to find application in the nanofabrication of photonic and nanoelectronic devices.

Suggested Citation

  • Xia Liu & Berke Erbas & Ana Conde-Rubio & Norma Rivano & Zhenyu Wang & Jin Jiang & Siiri Bienz & Naresh Kumar & Thibault Sohier & Marcos Penedo & Mitali Banerjee & Georg Fantner & Renato Zenobi & Nico, 2024. "Deterministic grayscale nanotopography to engineer mobilities in strained MoS2 FETs," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51165-4
    DOI: 10.1038/s41467-024-51165-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51165-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51165-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hong Li & Alex W. Contryman & Xiaofeng Qian & Sina Moeini Ardakani & Yongji Gong & Xingli Wang & Jeffrey M. Weisse & Chi Hwan Lee & Jiheng Zhao & Pulickel M. Ajayan & Ju Li & Hari C. Manoharan & Xiaol, 2015. "Correction: Corrigendum: Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide," Nature Communications, Nature, vol. 6(1), pages 1-1, November.
    2. Fan Wu & He Tian & Yang Shen & Zhan Hou & Jie Ren & Guangyang Gou & Yabin Sun & Yi Yang & Tian-Ling Ren, 2022. "Vertical MoS2 transistors with sub-1-nm gate lengths," Nature, Nature, vol. 603(7900), pages 259-264, March.
    3. Karel-Alexander N. Duerloo & Yao Li & Evan J. Reed, 2014. "Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    4. Pin-Chun Shen & Cong Su & Yuxuan Lin & Ang-Sheng Chou & Chao-Ching Cheng & Ji-Hoon Park & Ming-Hui Chiu & Ang-Yu Lu & Hao-Ling Tang & Mohammad Mahdi Tavakoli & Gregory Pitner & Xiang Ji & Zhengyang Ca, 2021. "Ultralow contact resistance between semimetal and monolayer semiconductors," Nature, Nature, vol. 593(7858), pages 211-217, May.
    5. Ming-Yang Li & Sheng-Kai Su & H.-S. Philip Wong & Lain-Jong Li, 2019. "How 2D semiconductors could extend Moore’s law," Nature, Nature, vol. 567(7747), pages 169-170, March.
    6. Hong Li & Alex W. Contryman & Xiaofeng Qian & Sina Moeini Ardakani & Yongji Gong & Xingli Wang & Jeffrey M. Weisse & Chi Hwan Lee & Jiheng Zhao & Pulickel M. Ajayan & Ju Li & Hari C. Manoharan & Xiaol, 2015. "Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    7. Yanfei Zhao & Mukesh Tripathi & Kristiāns Čerņevičs & Ahmet Avsar & Hyun Goo Ji & Juan Francisco Gonzalez Marin & Cheol-Yeon Cheon & Zhenyu Wang & Oleg V. Yazyev & Andras Kis, 2023. "Electrical spectroscopy of defect states and their hybridization in monolayer MoS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Nolan Lassaline & Raphael Brechbühler & Sander J. W. Vonk & Korneel Ridderbeek & Martin Spieser & Samuel Bisig & Boris Feber & Freddy T. Rabouw & David J. Norris, 2020. "Optical Fourier surfaces," Nature, Nature, vol. 582(7813), pages 506-510, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaoqiang Zhou & Lei Tong & Zefeng Chen & Li Tao & Yue Pang & Jian-Bin Xu, 2023. "Contact-engineered reconfigurable two-dimensional Schottky junction field-effect transistor with low leakage currents," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Qishuo Yang & Yun-Peng Wang & Xiao-Lei Shi & XingXing Li & Erding Zhao & Zhi-Gang Chen & Jin Zou & Kai Leng & Yongqing Cai & Liang Zhu & Sokrates T. Pantelides & Junhao Lin, 2024. "Constrained patterning of orientated metal chalcogenide nanowires and their growth mechanism," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Junzhu Li & Abdus Samad & Yue Yuan & Qingxiao Wang & Mohamed Nejib Hedhili & Mario Lanza & Udo Schwingenschlögl & Iwnetim Abate & Deji Akinwande & Zheng Liu & Bo Tian & Xixiang Zhang, 2024. "Single-crystal hBN Monolayers from Aligned Hexagonal Islands," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Subir Ghosh & Andrew Pannone & Dipanjan Sen & Akshay Wali & Harikrishnan Ravichandran & Saptarshi Das, 2023. "An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. John Daniel & Zheng Sun & Xuejian Zhang & Yuanqiu Tan & Neil Dilley & Zhihong Chen & Joerg Appenzeller, 2024. "Experimental demonstration of an on-chip p-bit core based on stochastic magnetic tunnel junctions and 2D MoS2 transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Xiaodong Zhang & Chenxi Huang & Zeyu Li & Jun Fu & Jiaran Tian & Zhuping Ouyang & Yuliang Yang & Xiang Shao & Yulei Han & Zhenhua Qiao & Hualing Zeng, 2024. "Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Yanfei Zhao & Mukesh Tripathi & Kristiāns Čerņevičs & Ahmet Avsar & Hyun Goo Ji & Juan Francisco Gonzalez Marin & Cheol-Yeon Cheon & Zhenyu Wang & Oleg V. Yazyev & Andras Kis, 2023. "Electrical spectroscopy of defect states and their hybridization in monolayer MoS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Qingxuan Li & Siwei Wang & Zhenhai Li & Xuemeng Hu & Yongkai Liu & Jiajie Yu & Yafen Yang & Tianyu Wang & Jialin Meng & Qingqing Sun & David Wei Zhang & Lin Chen, 2024. "High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Muhtasim Ul Karim Sadaf & Najam U Sakib & Andrew Pannone & Harikrishnan Ravichandran & Saptarshi Das, 2023. "A bio-inspired visuotactile neuron for multisensory integration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Shun Tian & Ke Zhou & Wanjian Yin & Yilun Liu, 2024. "Machine learning enables the discovery of 2D Invar and anti-Invar monolayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Bo Tong & Jinhong Du & Lichang Yin & Dingdong Zhang & Weimin Zhang & Yu Liu & Yuning Wei & Chi Liu & Yan Liang & Dong-Ming Sun & Lai-Peng Ma & Hui-Ming Cheng & Wencai Ren, 2022. "A polymer electrolyte design enables ultralow-work-function electrode for high-performance optoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Le Lei & Jiaqi Dai & Haoyu Dong & Yanyan Geng & Feiyue Cao & Cong Wang & Rui Xu & Fei Pang & Zheng-Xin Liu & Fangsen Li & Zhihai Cheng & Guang Wang & Wei Ji, 2023. "Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Xiaosong Wu & Shaocong Wang & Wei Huang & Yu Dong & Zhongrui Wang & Weiguo Huang, 2023. "Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51165-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.