IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49554-w.html
   My bibliography  Save this article

Intein-mediated temperature control for complete biosynthesis of sanguinarine and its halogenated derivatives in yeast

Author

Listed:
  • Yuanwei Gou

    (Zhejiang University
    Zhejiang University)

  • Dongfang Li

    (Zhejiang University)

  • Minghui Zhao

    (Zhejiang University
    Zhejiang University)

  • Mengxin Li

    (Zhejiang University)

  • Jiaojiao Zhang

    (Zhejiang University)

  • Yilian Zhou

    (Zhejiang University)

  • Feng Xiao

    (Zhejiang University)

  • Gaofei Liu

    (Zhejiang University)

  • Haote Ding

    (Zhejiang University
    Zhejiang University)

  • Chenfan Sun

    (Zhejiang University)

  • Cuifang Ye

    (Zhejiang University)

  • Chang Dong

    (Zhejiang University)

  • Jucan Gao

    (Zhejiang University)

  • Di Gao

    (Zhejiang University)

  • Zehua Bao

    (Zhejiang University
    Zhejiang University)

  • Lei Huang

    (Zhejiang University
    Zhejiang University)

  • Zhinan Xu

    (Zhejiang University)

  • Jiazhang Lian

    (Zhejiang University
    Zhejiang University)

Abstract

While sanguinarine has gained recognition for antimicrobial and antineoplastic activities, its complex conjugated structure and low abundance in plants impede broad applications. Here, we demonstrate the complete biosynthesis of sanguinarine and halogenated derivatives using highly engineered yeast strains. To overcome sanguinarine cytotoxicity, we establish a splicing intein-mediated temperature-responsive gene expression system (SIMTeGES), a simple strategy that decouples cell growth from product synthesis without sacrificing protein activity. To debottleneck sanguinarine biosynthesis, we identify two reticuline oxidases and facilitated functional expression of flavoproteins and cytochrome P450 enzymes via protein molecular engineering. After comprehensive metabolic engineering, we report the production of sanguinarine at a titer of 448.64 mg L−1. Additionally, our engineered strain enables the biosynthesis of fluorinated sanguinarine, showcasing the biotransformation of halogenated derivatives through more than 15 biocatalytic steps. This work serves as a blueprint for utilizing yeast as a scalable platform for biomanufacturing diverse benzylisoquinoline alkaloids and derivatives.

Suggested Citation

  • Yuanwei Gou & Dongfang Li & Minghui Zhao & Mengxin Li & Jiaojiao Zhang & Yilian Zhou & Feng Xiao & Gaofei Liu & Haote Ding & Chenfan Sun & Cuifang Ye & Chang Dong & Jucan Gao & Di Gao & Zehua Bao & Le, 2024. "Intein-mediated temperature control for complete biosynthesis of sanguinarine and its halogenated derivatives in yeast," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49554-w
    DOI: 10.1038/s41467-024-49554-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49554-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49554-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gi Bae Kim & Ji Yeon Kim & Jong An Lee & Charles J. Norsigian & Bernhard O. Palsson & Sang Yup Lee, 2023. "Functional annotation of enzyme-encoding genes using deep learning with transformer layers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Aaron Cravens & James Payne & Christina D. Smolke, 2019. "Synthetic biology strategies for microbial biosynthesis of plant natural products," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Jiazhang Lian & Mohammad HamediRad & Sumeng Hu & Huimin Zhao, 2017. "Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    4. Jiazhang Lian & Carl Schultz & Mingfeng Cao & Mohammad HamediRad & Huimin Zhao, 2019. "Multi-functional genome-wide CRISPR system for high throughput genotype–phenotype mapping," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Jie Zhang & Lea G. Hansen & Olga Gudich & Konrad Viehrig & Lærke M. M. Lassen & Lars Schrübbers & Khem B. Adhikari & Paulina Rubaszka & Elena Carrasquer-Alvarez & Ling Chen & Vasil D’Ambrosio & Beata , 2022. "A microbial supply chain for production of the anti-cancer drug vinblastine," Nature, Nature, vol. 609(7926), pages 341-347, September.
    6. Sheila M Reynolds & Lukas Käll & Michael E Riffle & Jeff A Bilmes & William Stafford Noble, 2008. "Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-14, November.
    7. Weerawat Runguphan & Xudong Qu & Sarah E. O’Connor, 2010. "Integrating carbon–halogen bond formation into medicinal plant metabolism," Nature, Nature, vol. 468(7322), pages 461-464, November.
    8. Bin Shen & Pingping Zhou & Xue Jiao & Zhen Yao & Lidan Ye & Hongwei Yu, 2020. "Fermentative production of Vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    9. Prashanth Srinivasan & Christina D. Smolke, 2020. "Biosynthesis of medicinal tropane alkaloids in yeast," Nature, Nature, vol. 585(7826), pages 614-619, September.
    10. Ryan S. Nett & Warren Lau & Elizabeth S. Sattely, 2020. "Discovery and engineering of colchicine alkaloid biosynthesis," Nature, Nature, vol. 584(7819), pages 148-153, August.
    11. Michael E. Pyne & Kaspar Kevvai & Parbir S. Grewal & Lauren Narcross & Brian Choi & Leanne Bourgeois & John E. Dueber & Vincent J. J. Martin, 2020. "A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    12. Ryan S. Nett & Warren Lau & Elizabeth S. Sattely, 2020. "Publisher Correction: Discovery and engineering of colchicine alkaloid biosynthesis," Nature, Nature, vol. 584(7821), pages 35-35, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Gao & Fei Li & Zhengshan Luo & Zhiwei Deng & Yan Zhang & Zhenbo Yuan & Changmei Liu & Yijian Rao, 2024. "Modular assembly of an artificially concise biocatalytic cascade for the manufacture of phenethylisoquinoline alkaloids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Christopher J. Vavricka & Shunsuke Takahashi & Naoki Watanabe & Musashi Takenaka & Mami Matsuda & Takanobu Yoshida & Ryo Suzuki & Hiromasa Kiyota & Jianyong Li & Hiromichi Minami & Jun Ishii & Kenji T, 2022. "Machine learning discovery of missing links that mediate alternative branches to plant alkaloids," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Radin Sadre & Thilani M. Anthony & Josh M. Grabar & Matthew A. Bedewitz & A. Daniel Jones & Cornelius S. Barry, 2022. "Metabolomics-guided discovery of cytochrome P450s involved in pseudotropine-dependent biosynthesis of modified tropane alkaloids," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Ruiqi Yan & Binghan Xie & Kebo Xie & Qi Liu & Songyang Sui & Shuqi Wang & Dawei Chen & Jimei Liu & Ridao Chen & Jungui Dai & Lin Yang, 2024. "Unravelling and reconstructing the biosynthetic pathway of bergenin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Simon d’Oelsnitz & Daniel J. Diaz & Wantae Kim & Daniel J. Acosta & Tyler L. Dangerfield & Mason W. Schechter & Matthew B. Minus & James R. Howard & Hannah Do & James M. Loy & Hal S. Alper & Y. Jessie, 2024. "Biosensor and machine learning-aided engineering of an amaryllidaceae enzyme," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Gita Naseri, 2023. "A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Xiaofei Yang & Shenghan Gao & Li Guo & Bo Wang & Yanyan Jia & Jian Zhou & Yizhuo Che & Peng Jia & Jiadong Lin & Tun Xu & Jianyong Sun & Kai Ye, 2021. "Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    8. Hao-Tian Wang & Zi-Long Wang & Kuan Chen & Ming-Ju Yao & Meng Zhang & Rong-Shen Wang & Jia-He Zhang & Hans Ågren & Fu-Dong Li & Junhao Li & Xue Qiao & Min Ye, 2023. "Insights into the missing apiosylation step in flavonoid apiosides biosynthesis of Leguminosae plants," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Weikai Chen & Xiangfeng Wang & Jie Sun & Xinrui Wang & Zhangsheng Zhu & Dilay Hazal Ayhan & Shu Yi & Ming Yan & Lili Zhang & Tan Meng & Yu Mu & Jun Li & Dian Meng & Jianxin Bian & Ke Wang & Lu Wang & , 2024. "Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Qun Yue & Jie Meng & Yue Qiu & Miaomiao Yin & Liwen Zhang & Weiping Zhou & Zhiqiang An & Zihe Liu & Qipeng Yuan & Wentao Sun & Chun Li & Huimin Zhao & István Molnár & Yuquan Xu & Shuobo Shi, 2023. "A polycistronic system for multiplexed and precalibrated expression of multigene pathways in fungi," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Dong Zheng & Yunlong Zheng & Junjie Tan & Zhenjie Zhang & He Huang & Yao Chen, 2024. "Co-immobilization of whole cells and enzymes by covalent organic framework for biocatalysis process intensification," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Sierra M. Brooks & Celeste Marsan & Kevin B. Reed & Shuo-Fu Yuan & Dustin-Dat Nguyen & Adit Trivedi & Gokce Altin-Yavuzarslan & Nathan Ballinger & Alshakim Nelson & Hal S. Alper, 2023. "A tripartite microbial co-culture system for de novo biosynthesis of diverse plant phenylpropanoids," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Kevin B. Reed & Sierra M. Brooks & Jordan Wells & Kristin J. Blake & Minye Zhao & Kira Placido & Simon d’Oelsnitz & Adit Trivedi & Shruti Gadhiyar & Hal S. Alper, 2024. "A modular and synthetic biosynthesis platform for de novo production of diverse halogenated tryptophan-derived molecules," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Bi-Qing Li & Le-Le Hu & Lei Chen & Kai-Yan Feng & Yu-Dong Cai & Kuo-Chen Chou, 2012. "Prediction of Protein Domain with mRMR Feature Selection and Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    15. William M. Shaw & Lucie Studená & Kyler Roy & Piotr Hapeta & Nicholas S. McCarty & Alicia E. Graham & Tom Ellis & Rodrigo Ledesma-Amaro, 2022. "Inducible expression of large gRNA arrays for multiplexed CRISPRai applications," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Jun Guo & Di Gao & Jiazhang Lian & Yang Qu, 2024. "De novo biosynthesis of antiarrhythmic alkaloid ajmaline," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Wenna Li & Zhao Zhou & Xianglai Li & Lin Ma & Qingyuan Guan & Guojun Zheng & Hao Liang & Yajun Yan & Xiaolin Shen & Jia Wang & Xinxiao Sun & Qipeng Yuan, 2022. "Biosynthesis of plant hemostatic dencichine in Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Lucas Serra Moncadas & Cyrill Hofer & Paul-Adrian Bulzu & Jakob Pernthaler & Adrian-Stefan Andrei, 2024. "Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Michael E. Pyne & James A. Bagley & Lauren Narcross & Kaspar Kevvai & Kealan Exley & Meghan Davies & Qingzhao Wang & Malcolm Whiteway & Vincent J. J. Martin, 2023. "Screening non-conventional yeasts for acid tolerance and engineering Pichia occidentalis for production of muconic acid," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Wenlong Zha & Fan Zhang & Jiaqi Shao & Xingmei Ma & Jianxun Zhu & Pinghua Sun & Ruibo Wu & Jiachen Zi, 2022. "Rationally engineering santalene synthase to readjust the component ratio of sandalwood oil," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49554-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.